

30XW - 30XWHWater-Cooled Liquid Chillers

Nominal cooling capacity: 275-1765 kW Nominal heating capacity: 320-1875 kW

50 Hz

Installation, operation and maintenance instructions

Quality and Environment Management Systems Approval

CONTENTS

1 - INTRODUCTION	4 5
1.3 - Maintenance safety considerations	5 6
2 - PRELIMINARY CHECKS 2.1 - Check equipment received 2.2 - Moving and siting the unit	7
3 - DIMENSIONS, CLEARANCES	9 10
4 - PHYSICAL AND ELECTRICAL DATA	12
4.2 - Electrical data, units without options 150, 5 and 6	13
4.4 - Compressor electrical data 30XW	
5 - ELECTRICAL CONNECTION 5.1 - Power supply	
5.2 - Voltage phase imbalance (%)	15
5.4 - Recommended wire sections 5.5 - Power cable entry 5.6 - Field control wiring	16
5.7 - 24 and 230 V power reserve for the user	17
6 - APPLICATION DATA	17
6.3 - Maximum chilled water flow	17
6.5 - Standard and optional number of water passes	18
6.7 - Variable flow evaporator	18
6.10 - Condenser pressure drop curves	19
7 - WATER CONNECTIONS	20
7.3 - Flow control	21 21
8 - HEAT MACHINE UNITS 30XWH- AND 30XWHP	
8.2 - Electrical data for Heat Machine units	22 22
8.4 - Operating range for Heat Machine units	

9 - OPTION FOR HIGH CONDENSING TEMPERATURES (OPTION 150)	23
9.1 - Physical data, units with option 150	
9.2 - Electrical data, units with option 150	
9.3 - Dimensions and clearances, units with option 150	25
9.4 - Operating limits, units with option 150	25
10 - MEDIUM TEMPERATURE (OPTION 5) AND LOW TEMPERATURE (OPTION 6) GLYCO	
OPTIONS	
10.1 - Physical data, units with options 5 and 6	25
10.2 - Electrical data, units with options 5 and 6	26
10.3 - Dimensions, clearances, units with option 5 and 6	26
10.4 - Operating range, units with options 5 and 6	
10.5 - Minimum recommended evaporator flow rate with options 5 and 6	
10.6 - Nominal evaporator pressure drop with options 5 and 6	26
11 - MAJOR SYSTEM COMPONENTS AND OPERATION DATA	27
11.1 - Direct-drive twin-screw compressor with variable capacity slide valve	27
11.2 - Pressure vessels	
11.3 - High-pressure safety switch	
11.4 - Electronic expansion valve (EXV)	
11.5 - Moisture indicator	
11.6 - Filter drier	
11.7 - Sensors	28
12 - OPTIONS AND ACCESSORIES	29
13 - STANDARD MAINTENANCE	
13.1 - Level 1 maintenance	
13.2 - Level 2 maintenance	
13.3 - Level 3 (or higher) maintenance	
13.4 - Tightening of the electrical connections	
13.5 - Tightening torques for the main bolts and screws	
13.6 - Evaporator and condenser maintenance	
13.7 - Compressor maintenance	31
14 - START-UP CHECKLIST FOR 30XW LIQUID CHILLERS (USE FOR JOB FILE)	32

This manual applies to the following four 30XW unit types:

• 30XW-- Standard-efficiency units

• 30XW-P High-efficiency units

and

• 30XWH- Heat Machine standard-efficiency units

• 30XWHP Heat Machine high-efficiency units

For the operation of the control please refer to the 30XA/30XW-Pro-Dialog control manual.

1 - INTRODUCTION

The 30XW Aquaforce units are designed to cool water for the air conditioning of buildings and industrial processes.

Prior to the initial start-up of the 30XW units, the people involved in the on-site installation, start-up, operation, and maintenance of this unit should be thoroughly familiar with these instructions and the specific project data for the installation site.

The 30XW liquid chillers are designed to provide a very high level of safety during installation, start-up, operation and maintenance. They will provide safe and reliable service when operated within their application range.

This manual provides the necessary information to familiarize yourself with the control system before performing start-up procedures. The procedures in this manual are arranged in the sequence required for machine installation, start-up, operation and maintenance.

Always ensure that all required safety measures are followed, including those in this document, such as: wearing protective clothing (gloves, safety glasses and shoes) using appropriate tools, employing qualified and skilled technicians (electricians, refrigeration engineers) and following local regulations.

To find out, if these products comply with European directives (machine safety, low voltage, electromagnetic compatibility, equipment under pressure etc.) check the declarations of conformity for these products.

1.1 - Installation safety considerations

Access to the unit must be reserved to authorised personnel, qualified and trained in monitoring and maintenance. The access limitation device must be installed by the customer (e.g. cut-off, enclosure).

After the unit has been received, when it is ready to be installed or reinstalled, and before it is started up, it must be inspected for damage. Check that the refrigerant circuit(s) is (are) intact, especially that no components or pipes have shifted (e.g. following a shock). If in doubt, carry out a leak tightness check and verify with the manufacturer that the circuit integrity has not been impaired. If damage is detected upon receipt, immediately file a claim with the shipping company.

Carrier strongly recommends employing a specialised company to unload the machine.

It is compulsory to wear personal protection equipment.

Do not remove the skid or the packaging until the unit is in its final position. These units can be moved with a fork lift truck, as long as the forks are positioned in the right place and direction on the unit.

The units can also be lifted with slings, using only the designated lifting points marked on the unit.

Use slings or lifting beams with the correct capacity, and always follow the lifting instructions on the certified drawings supplied with the unit. Do not tilt the unit more than 15°.

Safety is only guaranteed, if these instructions are carefully followed. If this is not the case, there is a risk of material deterioration and injuries to personnel.

Never cover any protection devices.

This applies to the safety valves (if used) in the refrigerant or heat transfer medium circuits, the fuse plugs and the pressure switches.

Ensure that the valves are correctly installed, before operating the unit.

If the relief valves are installed on a change-over manifold, this is equipped with a relief valve on each of the two outlets. Only one of the two relief valves is in operation, the other one is isolated. Never leave the change-over valve in the intermediate position, i.e. with both ways open (locate the control element in the stop position). If a relief valve is removed for checking or replacement please ensure that there is always an active relief valve on each of the change-over valves installed in the unit.

All factory-installed relief valves are lead-sealed to prevent any calibration change.

The external safety valves and the fuses are designed and installed to ensure damage limitation in case of a fire.

In accordance with the regulations applied for the design, the European directive on equipment under pressure and in accordance with the national usage regulations:

- these safety valves and fuses are not safety accessories but damage limitation accessories in case of a fire,
- the high pressure switches are the safety accessories.

The relief valve must only be removed if the fire risk is fully controlled and after checking that this is allowed by local regulations and authorities. This is the responsibility of the operator.

The external safety valves must in principle be connected to discharge pipes for units installed in a room. Refer to the installation regulations, for example those of European standards EN 378 and EN 13136.

They include a sizing method and examples for configuration and calculation. Under certain conditions these standards permit connection of several valves to the same discharge pipe. Note: Like all other standards these EN standards are available from national standards organisations.

These pipes must be installed in a way that ensures that people and property are not exposed to refrigerant leaks. These fluids may be diffused in the air, but far away from any building air intake, or they must be discharged in a quantity that is appropriate for a suitably absorbing environment.

It is recommended to install an indicating device to show if part of the refrigerant has leaked from the valve. The presence of oil at the outlet orifice is a useful indicator that refrigerant has leaked. Keep this orifice clean to ensure that any leaks are obvious.

The calibration of a valve that has leaked is generally lower than its original calibration. The new calibration may affect the operating range. To avoid a nuisance tripping or leaks, replace or re-calibrate the valve.

Periodic check of the relief valves: See paragraph 1.3 "Maintenance safety considerations".

Provide a drain in the discharge circuit, close to each relief valve, to avoid an accumulation of condensate or rain water.

Ensure good ventilation, as accumulation of refrigerant in an enclosed space can displace oxygen and cause asphyxiation or explosions.

Inhalation of high concentrations of vapour is harmful and may cause heart irregularities, unconsciousness, or death. Vapour is heavier than air and reduces the amount of oxygen available for breathing. These products cause eye and skin irritation. Decomposition products are hazardous.

1.2 - Equipment and components under pressure

See section "11.2 - Pressure vessels".

1.3 - Maintenance safety considerations

Engineers working on the electric or refrigeration components must be authorized, trained and fully qualified to do so.

All refrigerant circuit repairs must be carried out by a trained person, fully qualified to work on these units. He must have been trained and be familiar with the equipment and the installation. All welding operations must be carried out by qualified specialists.

The insulation must be removed and heat generation must be limited by using a wet cloth.

Any manipulation (opening or closing) of a shut-off valve must be carried out by a qualified and authorised engineer. These procedures must be carried out with the unit shut-down.

NOTE: The unit must never be left shut down with the liquid line valve closed, as liquid refrigerant can be trapped between this valve and the expansion device. (This valve is situated on the liquid line before the filter drier box.)

During any handling, maintenance and service operations the engineers working on the unit must be equipped with safety gloves, glasses, shoes and protective clothing.

Never work on a unit that is still energized.

Never work on any of the electrical components, until the general power supply to the unit has been cut using the disconnect switch(es) in the control box(es).

If any maintenance operations are carried out on the unit, lock the power supply circuit in the open position ahead of the machine.

If the work is interrupted, always ensure that all circuits are still deenergized before resuming the work.

ATTENTION: Even if the unit has been switched off, the power circuit remains energized, unless the unit or circuit disconnect switch is open. Refer to the wiring diagram for further details. Attach appropriate safety labels.

Operating checks:

IMPORTANT INFORMATION REGARDING THE REFRIGERANT USED:

 This product contains fluorinated greenhouse gas covered by the Kyoto protocol.
 Refrigerant type: R-134a
 Global Warming Potential (GWP): 1300

Periodic inspections for refrigerant leaks may be required depending on European or local legislation. Please contact your local dealer for more information.

• During the life-time of the system, inspection and tests must be carried out in accordance with national regulations.

Protection device checks (EN 378):

The safety devices must be checked on site once a year for safety devices (see chapter 11.3 - High-pressure safety switch), and every five years for external overpressure devices (external safety valves).

At least once a year thoroughly inspect the protection devices (valves). If the machine operates in a corrosive environment, inspect the protection devices more frequently.

Regularly carry out leak tests and immediately repair any leaks.

Ensure regularly that the vibration levels remain acceptable and close to those at the initial unit start-up.

Before opening a refrigerant circuit, purge and consult the pressure gauges.

Change the refrigerant when there are equipment failures, following a procedure such as the one described in NF E29-795 or carry out a refrigerant analysis in a specialist laboratory.

If the refrigerant circuit remains open for longer than a day after an intervention (such as a component replacement), the openings must be plugged and the circuit must be charged with nitrogen (inertia principle). The objective is to prevent penetration of atmospheric humidity and the resulting corrosion on the internal walls and on non-protected steel surfaces.

1.4 - Repair safety considerations

It is compulsory to wear personal protection equipment.

The insulation must be removed and warming up must be limited by using a wet cloth.

Before opening the unit always ensure that the circuit has been purged.

If work on the evaporator is required, ensure that the piping from the compressor is no longer pressurised (as the valve is not leaktight in the compressor direction.)

All installation parts must be maintained by the personnel in charge, in order to avoid material deterioration and injuries to people. Faults and leaks must be repaired immediately. The authorized technician must have the responsibility to repair the fault immediately. Each time repairs have been carried out to the unit, the operation of the protection devices must be re-checked.

Comply with the regulations and recommendations in unit and HVAC installation safety standards, such as: EN 378, ISO 5149, etc.

If a leak occurs or if the refrigerant becomes contaminated (e.g. by a short circuit in a motor) remove the complete charge using a recovery unit and store the refrigerant in mobile containers.

Repair the leak detected and recharge the circuit with the total R-134a charge, as indicated on the unit name plate. Certain parts of the circuit can be isolated. Only charge liquid refrigerant R-134a at the liquid line.

Ensure that you are using the correct refrigerant type before recharging the unit.

Charging any refrigerant other than the original charge type (R-134a) will impair machine operation and can even lead to a destruction of the compressors. The compressors operating with this refrigerant type are lubricated with a synthetic polyolester oil.

Do not use oxygen to purge lines or to pressurize a machine for any purpose. Oxygen gas reacts violently with oil, grease, and other common substances.

Never exceed the specified maximum operating pressures. Verify the allowable maximum high- and low-side test pressures by checking the instructions in this manual and the pressures given on the unit name plate.

Do not use air for leak testing. Use only refrigerant or dry nitrogen.

Do not unweld or flamecut the refrigerant lines or any refrigerant circuit component until all refrigerant (liquid and vapour) has been removed from chiller. Traces of vapour should be displaced with dry air nitrogen. Refrigerant in contact with an open flame produces toxic gases.

The necessary protection equipment must be available, and appropriate fire extinguishers for the system and the refrigerant type used must be within easy reach.

Do not siphon refrigerant.

Avoid contact with liquid refrigerant on the skin or splashing it into the eyes. Use safety goggles. Wash any spills from the skin with soap and water. If liquid refrigerant enters the eyes, immediately and abundantly flush the eyes with water and consult a doctor.

Never apply an open flame or live steam to a refrigerant container. Dangerous overpressure can result. If it is necessary to heat refrigerant, use only warm water.

During refrigerant removal and storage operations follow applicable regulations. These regulations, permitting conditioning and recovery of halogenated hydrocarbons under optimum quality conditions for the products and optimum safety conditions for people, property and the environment are described in standard NF E29-795.

Any refrigerant transfer and recovery operations must be carried out using a transfer unit. A 3/8" SAE connector on the manual liquid line valve is supplied with all units for connection to the transfer station. The units must never be modified to add refrigerant and oil charging, removal and purging devices. All these devices are provided with the units. Please refer to the certified dimensional drawings for the units.

Do not re-use disposable (non-returnable) cylinders or attempt to refill them. It is dangerous and illegal. When cylinders are empty, evacuate the remaining gas pressure, and move the cylinders to a place designated for their recovery. Do not incinerate.

Do not attempt to remove refrigerant circuit components or fittings, while the machine is under pressure or while it is running. Be sure pressure is at 0 kPa before removing components or opening a circuit.

Do not attempt to repair or recondition any safety devices when corrosion or build-up of foreign material (rust, dirt, scale, etc.) is found within the valve body or mechanism. If necessary, replace the device. Do not install safety valves in series or backwards.

ATTENTION: No part of the unit must be used as a walkway, rack or support. Periodically check and repair or if necessary replace any component or piping that shows signs of damage.

The refrigerant lines can break under the weight and release refrigerant, causing personal injury.

Do not climb on a machine. Use a platform, or staging to work at higher levels.

Use mechanical lifting equipment (crane, hoist, winch, etc.) to lift or move heavy components. For lighter components, use lifting equipment when there is a risk of slipping or losing your balance.

Use only original replacement parts for any repair or component replacement. Consult the list of replacement parts that corresponds to the specification of the original equipment.

Do not drain water circuits containing industrial brines, without informing the technical service department at the installation site or a competent body first.

Close the entering and leaving water shutoff valves and purge the unit water circuit, before working on the components installed on the circuit (screen filter, pump, water flow switch, etc.).

Do not loosen the water box bolts until the water boxes have been completely drained.

Periodically inspect all valves, fittings and pipes of the refrigerant and hydronic circuits to ensure that they do not show any corrosion or any signs of leaks.

It is recommended to wear ear defenders, when working near the unit and the unit is in operation.

2 - PRELIMINARY CHECKS

2.1 - Check equipment received

- Inspect the unit for damage or missing parts. If damage is detected, or if shipment is incomplete, immediately file a claim with the shipping company.
- Confirm that the unit received is the one ordered. Compare the name plate data with the order.
- The unit name plate must include the following information:
 - Version number
 - Model number
 - CE marking
 - Serial number
 - Year of manufacture and test date
 - Refrigerant used and refrigerant class
 - Refrigerant charge per circuit
 - Containment fluid to be used
 - PS: Min./max. allowable pressure (high and low pressure side)
 - TS: Min./max. allowable temperature (high and low pressure side)
 - Pressure switch cut-out pressures
 - Unit leak test pressure
 - Voltage, frequency, number of phases
 - Maximum current drawn
 - Maximum power input
 - Unit net weight
- Confirm that all accessories ordered for on-site installation have been delivered, and are complete and undamaged.

The unit must be checked periodically during its whole operating life to ensure that no shocks (handling accessories, tools etc.) have damaged it. If necessary, the damaged parts must be repaired or replaced. See also chapter 13 "Standard maintenance".

2.2 - Moving and siting the unit

2.2.1 - Moving

See chapter 1.1 "Installation safety considerations".

CAUTION: Only use slings at the designated lifting points which are marked on the unit.

2.2.2 - Siting the unit

Always refer to the chapter "Dimensions and clearances" to confirm that there is adequate space for all connections and service operations. For the centre of gravity coordinates, the position of the unit mounting holes, and the weight distribution points, refer to the certified dimensional drawing supplied with the unit.

Typical applications of these units are in refrigeration systems, and they do not require earthquake resistance. Earthquake resistance has not been verified.

If the unit is ordered with the vibration damper kit, please observe the safety and installation notices in the kit installation instructions.

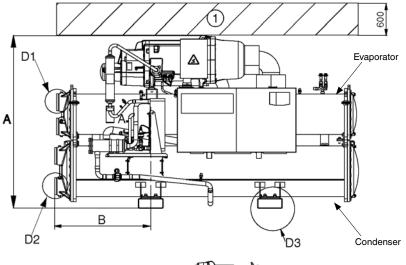
Before siting the unit check that:

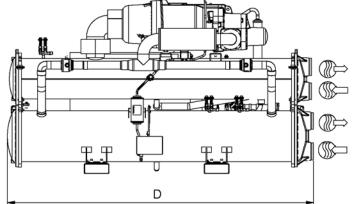
- the permitted loading at the site is adequate or that appropriate strenghtening measures have been taken.
- the unit is installed level on an even surface (maximum tolerance is 5 mm in both axes).
- there is adequate space above the unit for air flow and to ensure access to the components.
- the number of support points is adequate and that they are in the right places.
- the location is not subject to flooding.

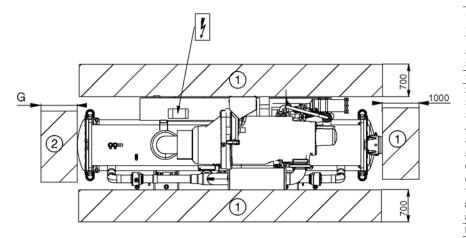
CAUTION: Lift and set down the unit with great care. Tilting and jarring can damage the unit and impair unit operation.

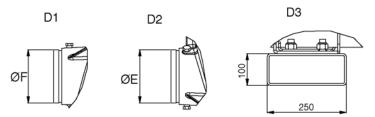
2.2.3 - Checks before system start-up

Before the start-up of the refrigeration system, the complete installation, including the refrigeration system must be verified against the installation drawings, dimensional drawings, system piping and instrumentation diagrams and the wiring diagrams.

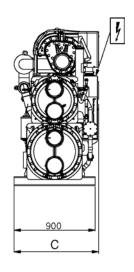

During the installation test national regulations must be followed. If no national regulation exists, standard EN 378 can be used as a guide.


External visual installation checks:


- Compare the complete installation with the refrigeration system and power circuit diagrams.
- Check that all components comply with the design specifications.
- Check that all protection documents and equipment provided by the manufacturer (dimensional drawings, P&ID, declarations etc.) to comply with the regulations are present.
- Verify that the environmental safety and protection and devices and arrangements provided by the manufacturer to comply with the regulations are in place.
- Verify that all document for pressure containers, certificates, name plates, files, instruction manuals provided by the manufacturer to comply with the regulations are present.
- Verify the free passage of access and safety routes.
- Check that ventilation in the plant room is adequate.
- Check that refrigerant detectors are present.
- Verify the instructions and directives to prevent the deliberate removal of refrigerant gases that are harmful to the environment.
- Verify the installation of connections.
- Verify the supports and fixing elements (materials, routing and connection).
- Verify the quality of welds and other joints.
- Check the protection against mechanical damage.
- Check the protection against heat.
- Check the protection of moving parts.
- Verify the accessibility for maintenance or repair and to check the piping.
- Verify the status of the valves.
- Verify the quality of the thermal insulation and of the vapour barriers.


3 - DIMENSIONS, CLEARANCES

3.1 - 30XW--/30XWH- 252-852 - 30XW-P/30XWHP 512-862



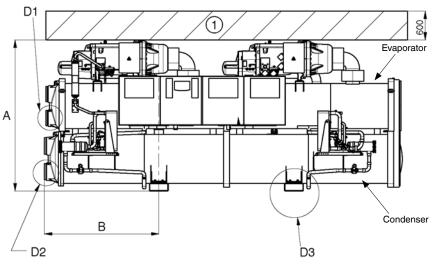
NOTES:

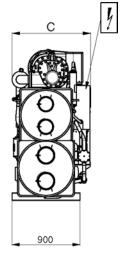
- Drawings are not contractually binding. Before designing an installation, consult the certified dimensional drawings supplied with the unit or available on request.
- For the positioning of the fixing points, weight distribution and centre of gravity coordinates please refer to the dimensional drawings.

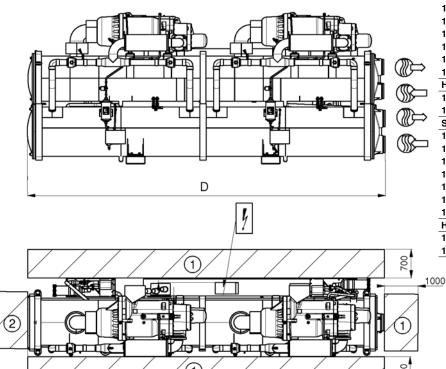
	D:						
	A	nsions i B	n mm C	D	E	F	G
Stanc	dard-effi					·	u
252	1580	800	927	2732	141.3		2600
302	1580	800	927	2732	141.3	141.3	2600
352	1580	800	927	2732	141.3	141.3	2600
402	1693	810	936	2742	141.3	141.3	2600
452	1693	810	936	2742	141.3	141.3	2600
552	1693	810	936	2742	141.3	141.3	2600
602	1693	810	936	2742	141.3	141.3	2600
652	1848	968	1044	3059	168.3	168.3	2800
702	1848	968	1044	3059	168.3	168.3	2800
802	1848	968	1044	3059	168.3	168.3	2800
852	1898	828	1044	2780	219.1	168.3	2600
	efficien						
512	1743	968	936	3059	168.3	168.3	2800
562	1743	968	936	3059	168.3		2800
712	1950	1083	1065	3290	219.1		3100
812	1950	1083	1070	3290	219.1	219.1	3100
862	1950	1083	1070	3290	219.1	219.1	3100
Stand	lard-effi	ciency		0XW/3	30XWH-	(option	150)
252	1580	800	927	2732		141.3	2600
302	1580	800	927	2732	141.3	141.3	2600
352	1580	800	927	2732	141.3	141.3	2600
402	1693	810	936	2742	141.3	141.3	2600
452	1693	810	936	2742	141.3	141.3	2600
552	1693	810	936	2742	141.3	141.3	2600
602	1693	810	936	2742	141.3	141.3	2600
652	1868	968	1090	3059	168.3	168.3	2800
702	1868	968	1090	3059	168.3	168.3	2800
802	1868	968	1090	3059	168.3	168.3	2800
852	1920	828	1090	2780	168.3	219.1	2600
High-	efficien	cy units	30XW	-P/30XI	IP (opti	on 150))
512	1743	968	936	3059	168.3	168.3	2800
562	1743	968	936	3059	168.3	168.3	2800
712	1970	1083	1105	3290	219.1	219.1	3100
812	1970	1083	1105	3290	219.1	219.1	3100
862	1970	1083	1105	3290	219.1	219.1	3100

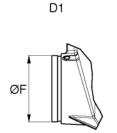
Legend:

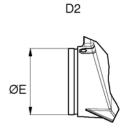
All dimensions are given in mm.

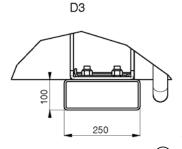

- 1 Required clearances for maintenance
- Recommended space for tube removal




₩ Water outlet


3.2 - 30XW--/30XWH- 1002-1552 - 30XW-P/30XWHP 1012-1162





			in mm				
	Α	В	С	D	E	F	G
Stand	ard-eff	iciency	units 3	OXW/	30XWH	-	
1002	1870	950	1036	4025	219.1	168.3	3800
1052	1870	950	1036	4025	219.1	168.3	3800
1152	1926	950	1036	4025	219.1	219.1	3800
1252	2051	1512	1162	4730	219.1	219.1	4500
1352	2051	1512	1162	4730	219.1	219.1	4500
1452	2051	1512	1162	4730	219.1	219.1	4500
1552	2051	1512	1162	4730	219.1	219.1	4500
High-e	efficien	cy unit	s 30XW	-P/30X	HP		
1012	1997	1512	1039	4730	219.1	219.1	4500
1162	1997	1512	1039	4730	219.1	219.1	4500
Stand	ard-eff	iciency	units 3	0XW/	30XWH	- (optio	n 150)
1002	1870	950	1036	4025	219.1	168.3	3800
1052	1870	950	1036	4025	219.1	168.3	3800
1152	1926	950	1036	4025	219.1	219.1	3800
1252	2071	1512	1201	4730	219.1	219.1	4500
1352	2071	1512	1201	4730	219.1	219.1	4500
1452	2071	1512	1201	4730	219.1	219.1	4500
1552	2071	1512	1201	4730	219.1	219.1	4500
High-e	efficien	cy unit	s 30XW	-P/30X	HP (opt	ion 150)
1012	1997	1512	1039	4730	219.1	219.1	4500
1162	1997	1512	1039	4730	219.1	219.1	4500

NOTES:

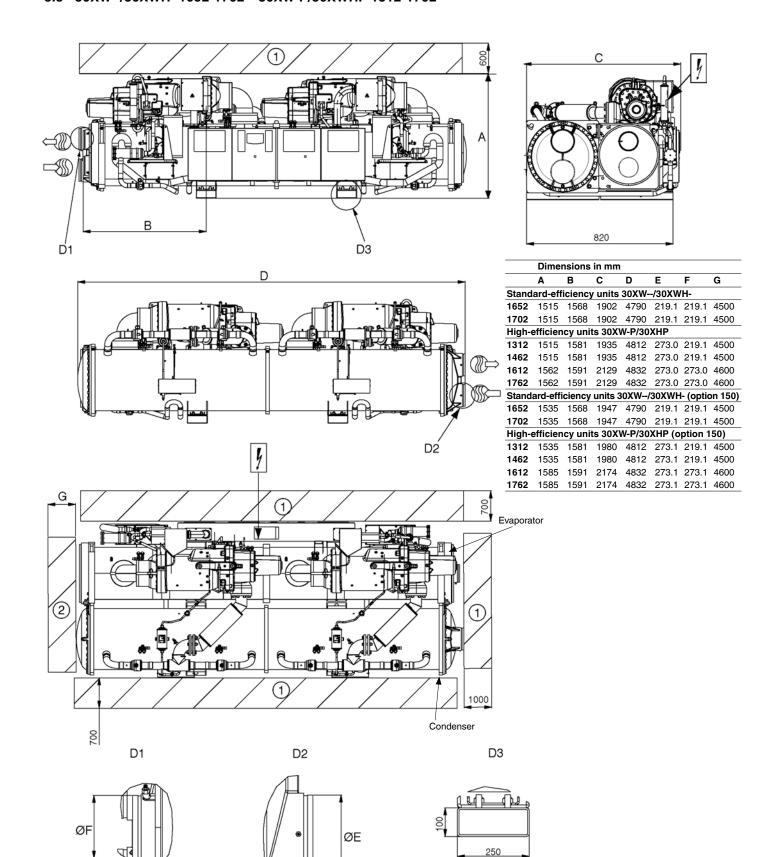
G

- Drawings are not contractually binding. Before designing an installation, consult the certified dimensional drawings supplied with the unit or available on request.
- For the positioning of the fixing points, weight distribution and centre of gravity coordinates please refer to the dimensional drawings.

_egend:

All dimensions are given in mm.

- 1 Required clearances for maintenance
- (2) Recommended space for tube removal


Water inlet

Water outlet

h Pov

Power supply connection

NOTES:

- Drawings are not contractually binding. Before designing an installation, consult the certified dimensional drawings supplied with the unit or available on request.
- For the positioning of the fixing points, weight distribution and centre of gravity coordinates please refer to the dimensional drawings.

Legend:

All dimensions are given in mm.

Recommended space for tube removal

Water inlet

₩ w

Water outlet

Powe

Power supply connection

4 - PHYSICAL AND ELECTRICAL DATA

4.1 - Physical data, units without options 150, 5 and 6

30XW/30XWH		252	302	352	402	452	552	602	652	702	802	852	1002	1052	1152	1252	1352	1452	1552	1652	1702
Operating weight	kg	2054	2059	2083	2575	2575	2613	2644	3247	3266	3282	3492	5370	5408	5705	7066	7267	7305	7337	8681	8699
Compressors		Semi-	hermet	ic 06T	screw c	ompre	ssors, 5	50 r/s													
Circuit A		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Circuit B		_	-	-	-	-	-	-	-	_	-	-	1	1	1	1	1	1	1	1	1
Refrigerant charge*		R-134	a																		
Circuit A	kg	84	80	78	82	82	82	82	145	140	135	140	85	85	105	120	115	110	105	195	195
Circuit B	kg	-	-	-	-	-	-	-	-	-	-	-	85	85	105	120	115	110	105	195	195
Oil charge		SW22	0.0																		
Circuit A	1	23.5		23.5	32	32	32	32	36	36	36	36	32	32	32	36	36	36	36	36	36
Circuit B	i	-	-	-	-	-	-	-	-	-	-	-	32	32	32	32	36	36	36	36	36
Capacity control		Pro-D	ialog e	lectron	ic expa	nsion v	alves (FXV)													
Minimum capacity	%	15	15	15	15	15	15	15	15	15	15	15	10	10	10	10	10	10	10	10	10
Evaporator	,,,		pipe flo																		
Net water volume	1	64	64	64	72	72	72	72	109	109	109	98	185	185	214	307	307	307	307	363	363
Water connections	•	Victau		04	, _	, _	, _	, _	100	100	100	50	100	100	217	007	007	007	007	000	000
Inlet/outlet**	in	5	5	5	5	5	5	5	6	6	6	6	6	6	8	8	8	8	8	8	8
Drain and vent	in	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8
connections (NPT)		5/0	3/0	3/0	3/0	3/0	3/0	3/0	3/0	3/0	3/0	5/0	3/0	5/0	5/0	3/0	3/0	5/0	5/0	3/0	3/0
Max. water-side	kPa	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
operating pressure	ni d	.000	. 500	. 500	. 500	. 500	. 500	. 500	. 500	.000	.000	. 500	.000	.000	.000	.000	.000	.000	.000	. 500	. 500
Condenser		Multi-ı	pipe typ	oe																	
Net water volume	1	55	55	55	80	80	80	80	80	80	80	141	238	238	238	347	347	347	347	426	426
Water connections	-	Victau																		.=-	
Inlet/outlet**	in	5	5	5	5	5	5	5	6	6	6	8	8	8	8	8	8	8	8	8	8
Drain and vent	in	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8
connections (NPT)																					
Max. water-side operating pressure	kPa	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
High-efficiency units																					
30XW-P/30XWHP					512	56	2	712	81	2	862	1	012	1162	2 1	1312	146	2	1612	17	62
Operating weight			kg		2981	302	20	3912	39)47	3965	6	872	6950) 9	9099	930	7	10910	10	946
Compressors					Semi-h	ermeti	c 06T s	crew co	mpres	sors, 50) r/s										
Circuit A					1	1		1	1		1	1		1	1	1	1		1	1	
Circuit B					-	-		-	-		-	1		1	1	1	1		1	1	
Refrigerant charge*					R-134a	a															
Circuit A			kg		130	130	0	180	17	'5	170	1	20	120	2	205	205		240	25	0
Circuit B			kg		-	-		-	-		-	1.	20	120	2	205	205		240	25	0
Oil charge					SW220)															
Circuit A			- 1		32	32		36	36	6	36	3	2	32	3	36	36		36	36	
Circuit B			- 1		-	-		-	-		-	3	2	32	3	32	36		36	36	
Capacity control					Pro-Dia	alog, el	ectronic	expar	sion va	lves (E	XV)										
Minimum capacity			%		15	15		15	15	,	15	1	0	10	-	10	10		10	10	
Evaporator					Multi-p	ipe floc	ded typ	ре													
Net water volume			- 1		106	100	6	154	15	54	154	3	07	307	3	363	363		473	47	3
Water connections					Victaul	ic															
Inlet/outlet**			in		6	6		8	8		8	8		8	8	3	8		10	10)
Drain and vent connec	tions (NPT)	in		3/8	3/8	}	3/8	3/	8	3/8		/8	3/8		3/8	3/8		3/8	3/8	
	,	,	kF		1000	10		1000		000	1000		000	1000		1000	100	0	1000		00
Max. water-side operat				-		ipe typ															-
Max. water-side operat																					
Condenser			1				2	165	16	35	165	3	47	347	4	497	497		623	62	:3
Condenser Net water volume	<u> </u>		I		112	11:	2	165	16	65	165	3	47	347	4	497	497		623	62	:3
Condenser Net water volume Water connections	<u> </u>				112 Victaul	11: ic	2			65											
Condenser Net water volume Water connections Inlet/outlet**	tions (NPT)	in		112 Victaul 6	11: ic 6		8	8		8	8		8		10	10		10	10)
Condenser Net water volume Water connections	,	,			112 Victaul	11: ic	3		8			8								10 3/8)

Weights are guidelines only. The refrigerant charge is given on the unit nameplate. For options 100C (evaporator - 1 pass) and 102C (condenser - 1 pass) please refer to the chapter "Water connections".

4.2 - Electrical data, units without options 150, 5 and 6

30XW/30XWH Power circuit	y units	252	302	352	402	452	552	602	652	702	802	852	1002	1052	1152	1252	1352	1452	1552	1652	1702
Nom. power supply	V-ph-Hz	400-3	-50																		
Voltage range	v ·	360-4																			
Control circuit		24 V v	ria the b	uilt-in	transform	ner															
Nominal start-up of																					
Circuit A	Α	233	233	303	414	414	414	414	587	587	587	587	414	414	414	587	587	587	587	587	587
Circuit B	A	-	-	-	-	-	-	-	-	-	-	-	414	414	414	414	587	587	587	587	587
Option 81	Α	-	-	-	-	-	-	-	-	-	-	-	558	574	574	747	780	801	819	819	819
Maximum start-up		233	233	202	414	44.4	414	44.4	E07	E07	E07	587	414	414	444	E07	E07	E07	E07	E07	E07
Circuit A Circuit B	A A	233	233	303	414	414	414	414	587	587	587	367	414	414	414 414	587 414	587 587	587 587	587 587	587 587	587 587
Option 81	A	-	-	-	-	-	-	-	-	-	-	-	631	656	656	829	882	904	938	938	938
Cosine phi													001	000	000	023	002	304	300	300	300
Nominal***		0.83	0.85	0.83	0.87	0.88	0.89	0.89	0.88	0.89	0.90	0.90	0.88	0.89	0.89	0.88	0.88	0.89	0.90	0.90	0.90
Maximum****		0.89	0.89	0.88	0.90	0.90	0.91	0.91	0.90	0.91	0.92	0.92	0.90	0.91	0.91	0.90	0.90	0.91	0.92	0.92	0.92
Maximum power ir	put†																				
Circuit A	kW	76	89	97	128	135	151	151	184	200	223	223	150	151	151	184	184	200	223	223	223
Circuit B	kW	-	-	-	-	-	-	-	-	-	-	-	135	151	151	151	184	200	223	202	223
Option 81	kW	-	-	-	-	-	-	-	-	-	-	-	284	301	301	334	367	399	447	425	447
Nominal current di																					
Circuit A	Α	84	96	113	136	144	162	162	193	214	232	232	162	162	162	193	193	214	232	232	232
Circuit B	A	-	-	-	-	-	-	-	-	-	-	-	144	162	162	162	193	214	232	214	232
Option 81	Α	-	-	•	-	-	-	-	-	-	-	-	306	324	324	355	386	427	464	446	464
Maximum current	•	, ·	115	100	000	017	040	0.40	005	047	054	054	0.40	0.40	0.40	005	005	017	054	054	0.54
Circuit A	A	123	145	160	206	217	242	242	295	317	351	351	242	242	242	295	295	317	351	351	351
Circuit B Option 81	A	-	-	-	-	-	-	-	-	-	-	-	217 459	242 484	242 484	242 537	295 590	317 634	351 702	317 668	351 702
	A drown (Ur	- 100/ \:	****	-	-	-	-	-	-	-	-	-	459	484	484	537	590	634	702	800	702
Maximum current Circuit A	arawn (Ur A	1 -10%) 138	162	178	218	230	260	260	304	340	358	358	260	260	260	304	304	340	358	358	358
Circuit A Circuit B	A	130	102	1/6	∠10 -	230	260	260	-	J4U -	550	358	230	260	260	260	304	340	358	340	358
Option 81	A	_	_	-	-	_	_	_	_	_	_	-	490	520	520	564	608	680	716	698	716
Maximum power ir		ontion 1	150B+										430	320	320	30+	000	000	710	000	710
Circuit A	kW	67	79	87	114	118	133	134	173	183	205	205	133	133	133	173	173	183	207	207	207
Circuit B	kW	-	-	-		-	-	-	-	-	-	-	118	133	133	133	173	183	207	185	207
Option 81	kW	-	-	-	-	-	_	-	-	-	_	-	251	265	265	305	346	365	414	391	414
Maximum current		n) with o	option	150B+													0.0				
Circuit A	Α	109	129	142	183	191	212	212	278	290	325	325	212	212	212	278	278	290	325	325	325
Circuit B	Α	-	-	-	-	-		-	-		-	-	191	212	212	212	278	290	325	290	325
Option 81	Α	-	-	-	-	-	-	-	-	-	-	-	403	424	424	490	556	580	650	615	650
High-efficiency un	its																				
30XW-P/30XWHP					512	562	!	712	81	2	862	1(012	1162	1	312	146	2	1612	17	62
Power circuit			\/ I-	. 11=	400 0 5	^															
Nominal power supp	oiy		V-ph V	1-HZ	400-3-5																
Voltage range Control circuit			v		360-440 24 V via		t-in tran	eformor							-					-	
Nominal start-up of	urrent*				24 V VIA	ti le buil	t-iii iiaii	ISIOITIICI													
Circuit A	uncin																				7
Circuit B			Δ		414	414		587	58	7	587	4	14	414	-	87	587		587	58	•
			A A		414	414		587	58	7	587	4.		414 414		87 114	587 587		587 587	581 581	7
			Α		414 - -	414 - -			58 - -	7		41	14	414	4	114	587		587	58	
Option 81	current**				-	-		-	-	7	-	41			4						
Option 81 Maximum start-up	current**		A A		-	-		-	-		-	4 ⁻ 55	14	414	7	114 747	587 780		587	581 819	9
Option 81 Maximum start-up Circuit A	current**		Α		-	-		-	-		-	4 ⁻ 55	14 56 14	414 574	4 7	114	587		587 801	58	9 <u> </u>
Option 81 Maximum start-up Circuit A Circuit B	current**		A A		-	-		-	-		-	4 ⁻ 55	14 56 14 14	414 574 414	5 2	114 747 587	587 780 587		587 801 587	58° 819 58°	9 7 7
Option 81 Maximum start-up Circuit A Circuit B Option 81 Cosine phi	current**		A A A		-	- - 414 -		- - 587 -	- - 58 -		- - 587 -	4 ⁻ 55 4 ⁻ 4 ⁻	14 56 14 14	414 574 414 414	5 2	114 747 587 114	587 780 587 587		587 801 587 587	581 811 581 581	9 7 7
Option 81 Maximum start-up Circuit A Circuit B Option 81 Cosine phi Nominal***	current**		A A A		414 0.88	- - 414 - - -	· 	587 - - -	58 - - -	7	587 - - 0.90	4 ⁻ 55 4 ⁻ 4 ⁻ 60	14 56 14 14	414 574 414 414 656 0.87	5 2 8	114 747 587 114	587 780 587 587 882 0.88		587 801 587 587	58° 819 58° 58° 936	9 7 7 8 90
Option 81 Maximum start-up Circuit A Circuit B Option 81 Cosine phi Nominal*** Maximum****			A A A		414	- - 414 - -	· 	587 -	- - 58 - -	7	- - 587 -	4 ⁻ 55 4 ⁻ 4 ⁻ 63	14 56 14 14 31	414 574 414 414 656	5 2 8	114 747 587 114 329	587 780 587 587 882		587 801 587 587 904	58° 819 58° 58° 936	9 7 7 8 90
Option 81 Maximum start-up Circuit A Circuit B Option 81 Cosine phi Nominal*** Maximum power in			A A A A		414 - - 0.88 0.90	- 414 - - 0.89	9	587 - - - 0.88 0.90	58 - - - 0.8	7 39 91	587 - - - 0.90 0.92	4 ⁻ 55 4 ⁻ 63 0. 0.	14 56 14 14 31 86 89	414 574 414 414 656 0.87 0.90	4 7 5 4 8	587 114 329 0.88 0.90	587 780 587 587 882 0.88 0.90		587 587 587 904 0.89 0.91	58° 819 58° 58° 936 0.9	7 7 8 90 92
Option 81 Maximum start-up Circuit A Circuit B Option 81 Cosine phi Nominal*** Maximum power in Circuit A			A A A A		414 0.88	- - 414 - - -	9	587 - - -	58 - - -	7 39 91	587 - - 0.90	4- 55 4- 4- 63 0. 0.	14 56 14 14 31 86 89	414 574 414 414 656 0.87 0.90	4 77 5 4 8 0 0	587 114 329 0.88 0.90	587 780 587 587 882 0.88 0.90		587 801 587 587 904 0.89 0.91	58 819 58 58 930 0.9 0.9	9 7 7 8 90 92
Option 81 Maximum start-up Circuit A Circuit B Option 81 Cosine phi Nominal*** Maximum**** Maximum power in Circuit A Circuit B			A A A A kW kW		414 - - 0.88 0.90	- 414 - - 0.89	9	587 - - - 0.88 0.90	58 - - - 0.8	7 39 91	587 - - 0.90 0.92 223	4° 555 4° 4° 4° 6° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5°	14 14 14 14 31 86 89	414 574 414 414 656 0.87 0.90	4 77 5 4 8 0 0	114 147 587 114 329 0.88 0.90	587 780 587 587 882 0.88 0.90		587 801 587 587 904 0.89 0.91 200 200	58 819 58 58 930 0.9 0.9	7 7 8 90 92
Option 81 Maximum start-up Circuit A Circuit B Option 81 Cosine phi Nominal*** Maximum**** Maximum power in Circuit A Circuit B Option 81	nput†		A A A A		- - 414 - - 0.88 0.90	- 414 - - 0.89 0.90	9	587 - - - 0.88 0.90	58 - - - 0.8	7 39 91	587 - - - 0.90 0.92	4° 555 4° 4° 4° 6° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5°	14 56 14 14 31 86 89	414 574 414 414 656 0.87 0.90	4 77 5 4 8 0 0	587 114 329 0.88 0.90	587 780 587 587 882 0.88 0.90		587 801 587 587 904 0.89 0.91	58 819 58 58 930 0.9 0.9	7 7 8 90 92
Option 81 Maximum start-up Circuit A Circuit B Option 81 Cosine phi Nominal*** Maximum power in Circuit A Circuit B Option 81 Nominal current d	nput†		A A A A kW kW kW		- 414 0.88 0.90	- - - 414 - - - 0.89 0.90	9	587 - - 0.88 0.90 184	- - - - - 0.8 0.9	7 39 91 0	587 - - 0.90 0.92 223 -	4 55 4 4 4 60 0.0.	14 56 14 14 31 86 89 34 34	414 574 414 414 656 0.87 0.90 151 151 301	4 77 5 4 8 8 0 0 0	114 747 587 114 329 0.88 0.90 84 151 334	587 780 587 587 882 0.88 0.90 184 184 367		587 801 587 587 904 0.89 0.91 200 200 399	58 819 58 58 930 0.9 0.9 223 244	9 7 7 8 90 92 3 3 7
Option 81 Maximum start-up Circuit A Circuit B Option 81 Cosine phi Nominal*** Maximum power in Circuit A Circuit B Option 81 Nominal current d Circuit A	nput†		A A A A kW kW kW		- 414 0.88 0.90 135 144	- - - 414 - - - 0.89 0.90 151 - -	9	587 - - 0.88 0.90 184 - -	58 - - 0.8 0.9 20 - -	7 39 91 0	587 - - 0.90 0.92 223 - -	4 55 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	14 56 14 14 13 13 86 89 34 34 37	414 574 414 414 656 0.87 0.90 151 151 301	4 4 7 7 7 5 5 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	114 747 587 114 329 0.88 0.90 184 151 334	587 780 587 587 882 0.88 0.90 184 184 367		587 801 587 587 904 0.89 0.91 200 200 399 214	58 819 58 58 930 0.9 0.9 223 244 232	9 7 7 8 8 90 92 3 3 7
Option 81 Maximum start-up Circuit A Circuit B Option 81 Cosine phi Nominal*** Maximum **** Maximum power ii Circuit A Circuit B Option 81 Nominal current d Circuit A Circuit B	nput†		A A A A kW kW kW		- 414 0.88 0.90	- - 4144 - - 0.89 0.90 151 - -	9	587 - - 0.88 0.90 184 - -	- - - - - 0.8 0.9	7 39 91 0	587 - - 0.90 0.92 223 - - 232	4 55 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	14 14 14 14 31 86 89 34 34 37	414 574 414 414 656 0.87 0.90 151 151 301 162 162	44 77 5 44 8 00 01 11 13	114 747 587 114 329 0.88 0.90 84 51 334	587 780 587 587 882 0.88 0.90 184 184 367 193 193	:	587 801 587 587 904 0.89 0.91 200 200 399 214 214	588 819 58 58 936 0.9 0.9 222 222 444 233 233	9 7 7 8 8 90 92 3 3 7
Option 81 Maximum start-up Circuit A Circuit B Option 81 Cosine phi Nominal*** Maximum**** Maximum power in Circuit A Circuit B Option 81 Nominal current d Circuit A Circuit A	nput† rawn***		A A A A kW kW kW		- 414 0.88 0.90 135 144	- - - 414 - - - 0.89 0.90 151 - -	9	587 - - 0.88 0.90 184 - -	58 - - 0.8 0.9 20 - -	7 39 91 0	587 - - 0.90 0.92 223 - -	4 55 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	14 56 14 14 13 13 86 89 34 34 37	414 574 414 414 656 0.87 0.90 151 151 301	44 77 5 44 8 00 01 11 13	114 747 587 114 329 0.88 0.90 184 151 334	587 780 587 587 882 0.88 0.90 184 184 367	:	587 801 587 587 904 0.89 0.91 200 200 399 214	58 819 58 58 930 0.9 0.9 223 244 232	9 7 7 8 8 90 92 3 3 7
Option 81 Maximum start-up Circuit A Circuit B Option 81 Cosine phi Nominal*** Maximum**** Maximum power in Circuit A Circuit B Option 81 Nominal current d Circuit A Circuit A Circuit A Circuit A Circuit B Option 81	nput† rawn***	n)†	A A A A kW kW kW			- - - 414 - - 0.88 0.90 151 - - -	9	587 - - 0.88 0.90 184 - - 193	58 - - 0.8 0.9 - - - 21	7 39 91 0	587 - 0.90 0.92 223 - - 232	4° 55 4° 4° 4° 6° 6° 6° 6° 6° 6° 6° 6° 6° 6° 6° 6° 6°	14 56 14 14 14 331 86 89 34 34 34 37 44 44 48 88	414 574 414 414 656 0.87 0.90 151 151 301 162 162 324	4 77 5 8 0 0 0	114 747 587 114 329 0.88 0.90 84 51 334 93 62 855	587 780 587 587 882 0.88 0.90 184 184 367 193 386		587 801 587 587 904 0.89 0.91 200 200 399 214 214 427	588 819 588 936 0.9 0.9 222 222 444 233 246	9 7 7 8 8 90 92 3 3 7 2 2 4
Option 81 Maximum start-up Circuit A Circuit B Option 81 Cosine phi Nominal*** Maximum power is Circuit A Circuit B Option 81 Nominal current d Circuit A Circuit B Option 81 Maximum current Maximum current Circuit A	nput† rawn***	n)†	A A A A kW kW kW			- - - 4144 - - 0.88 0.90 151 - - - 162 - -	9	587 - - 0.88 0.90 184 - - 193 - -	- - - - - - - - - - - - - - - - - - -	7 39 91 0	587 - 0.90 0.92 223 - - 232 - - 351	4 4 4 4 6 6 5 0 0 0 0 1 1 1 1 1 2 6 2 1 4 2 8 2 2 2 2 1 4 1 1 4 1 2 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14 14 14 31 86 89 34 34 37 44 44 43 88	414 574 414 414 656 0.87 0.90 151 151 301 162 162 324	4 4 7 7 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	114 747 587 114 329 0.88 0.90 84 51 334 193 162 295	587 780 587 587 587 882 0.88 0.90 184 184 367 193 386	;	587 801 587 587 904 0.89 0.91 200 200 399 214 214 427 317	588 819 588 936 0.9 0.9 222 244 233 466 35	9 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Option 81 Maximum start-up Circuit A Circuit B Option 81 Cosine phi Nominal*** Maximum power in Circuit A Circuit B Option 81 Nominal current d Circuit B Option 81 Maximum current Circuit A Circuit B	nput† rawn***	1)†	A A A A A A A			- - - - - - - - - - - - - - - - - - -	9	587 - - 0.88 0.90 184 - - 193 - -	58 	7 39 91 0	587 - - 0.90 0.92 223 - - 232 - - 351	4 4 4 4 6 6 6 0 0 0 0 1 1 1 1 2 1 2 1 2 2 2 2 2 2 2 2	14 56 14 14 31 86 89 34 34 37 44 44 43 38	414 574 414 414 656 0.87 0.90 151 151 301 162 162 324 242 242	4 77 5 8 0 0 0 1 1 1 3 3	114 747 587 114 329 0.88 0.90 84 51 334 93 62 295 242	587 780 587 587 882 0.88 0.90 184 184 367 193 386 295 295		587 801 587 587 904 0.89 0.91 200 200 399 214 214 427 317 317	58 81! 58 58 93: 0.9 0.9 22: 22: 24: 44: 23: 23: 46: 35: 35:	9 7 7 7 7 8 8 90 92 2 2 4 1 1
Option 81 Maximum start-up Circuit A Circuit B Option 81 Cosine phi Nominal*** Maximum power in Circuit A Circuit B Option 81 Nominal current d Circuit A Circuit B Option 81 Maximum current Circuit A Circuit B Option 81 Maximum current	nput† rawn*** drawn (Ur	, .	A A A A A A A			- - - 4144 - - 0.88 0.90 151 - - - 162 - -	9	587 - - 0.88 0.90 184 - - 193 - -	- - - - - - - - - - - - - - - - - - -	7 39 91 0	587 - 0.90 0.92 223 - - 232 - - 351	4 4 4 4 6 6 6 0 0 0 0 1 1 1 1 2 1 2 1 2 2 2 2 2 2 2 2	14 14 14 31 86 89 34 34 37 44 44 43 88	414 574 414 414 656 0.87 0.90 151 151 301 162 162 324	4 77 5 8 0 0 0 1 1 1 3 3	114 747 587 114 329 0.88 0.90 84 51 334 193 162 295	587 780 587 587 587 882 0.88 0.90 184 184 367 193 386		587 801 587 587 904 0.89 0.91 200 200 399 214 214 427 317	588 819 588 936 0.9 0.9 222 244 233 466 35	9 7 7 7 7 8 8 90 92 2 2 4 1 1
Option 81 Maximum start-up Circuit A Circuit B Option 81 Cosine phi Nominal*** Maximum **** Maximum power in Circuit A Circuit B Option 81 Nominal current d Circuit A Circuit B Option 81 Maximum current Circuit A Circuit B Option 81 Maximum current Circuit A Circuit B Option 81	nput† rawn*** drawn (Ur	, .	A A A A A A A A			- - - 414 - - - 0.89 0.90 151 - - - - - - - - - - - - - - - - - -	900	587 - - 0.88 0.90 184 - - - 193 - - -	588	7 39 91 0 4 7	587 - - 0.90 0.92 223 - - - 351 -	4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	14 14 14 131 86 89 34 34 34 37 14 44 43 38	414 574 414 414 656 0.87 0.90 151 151 301 162 324 242 242 484	44 77 5 5 6 8 6 0 0 0 1 1 1 3 3 1 1 1 3 3 2 2 5 5 5	114 747 587 114 329 0.88 0.90 184 151 334 93 62 355	587 780 587 587 587 882 0.88 0.90 184 184 367 193 386 295 590		587 801 587 587 904 0.89 0.91 200 200 399 214 214 427 317 317 634	58 819 58 93 0.9 0.9 22: 22: 44' 23: 46 35 35 70:	9 7 7 7 8 8 0 0 2 2 2 2 4 4 1 1 1 1 2
Option 81 Maximum start-up Circuit A Circuit B Option 81 Cosine phi Nominal*** Maximum power in Circuit A Circuit B Option 81 Nominal current d Circuit A Circuit B Option 81 Maximum current Circuit A Circuit B	nput† rawn*** drawn (Ur	, .	A A A A A A A A A A A A A A A A A A A			- - - 414 - - - 0.86 0.90 151 - - - - - - - - - - - - - - - - - -	900		58 	7 39 91 0 4 7	587 - - 0.90 0.92 223 - - - 232 - - - 351 - -	4 4 55 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	14 56 14 14 131 86 89 34 34 36 37 44 44 43 38	414 574 414 414 656 0.87 0.90 151 151 1301 162 162 324 242 242 484	44 77 5 8 8 0 0 0 1 1 1 3 3 2 2 2 5 5	114 147 1887 1114 329 1.88 1.90 1.84 1.51 1.334 1.93 1.62 1.93 1.	587 780 587 587 882 0.88 0.90 184 184 367 193 386 295 295 590		587 801 587 587 904 0.89 0.91 200 200 399 214 214 427 317 317 634 340	58 81! 588 930 0.9 0.9 222 244 44: 23: 46: 35 35 70:	9 7 7 7 8 8 00 22 3 3 3 7 2 2 2 4 4 1 1 1 2 2
Option 81 Maximum start-up Circuit A Circuit B Option 81 Cosine phi Nominal*** Maximum power in Circuit A Circuit B Option 81 Nominal current d Circuit B Option 81 Maximum current Circuit B Option 81 Maximum current Circuit B Option 81	nput† rawn*** drawn (Ur	, .	A A A A A A A A A			- - - 414 - - - 0.89 0.90 151 - - - - - - - - - - - - - - - - - -	900	587 - - 0.88 0.90 184 - - - 193 - - -	588	7 39 91 0 4 7	587 - - 0.90 0.92 223 - - - 351 -	4 4 55 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	14 156 14 14 14 31 86 89 34 34 34 34 36 7 7 17 17 17 17 34	414 574 414 414 656 0.87 0.90 151 151 301 162 162 324 242 242 484	44 77 55 88 00 01 11 13 33 22 55	814 687 8114 329 0.88 0.90 84 51 334 93 62 855 242 237 304 260	587 780 587 587 882 0.88 0.90 184 184 367 193 386 295 590 304 304		587 801 587 587 904 0.89 0.91 200 200 399 214 214 427 317 634 340 340	58 81! 588 930 0.9 0.9 22: 22: 44' 23: 23: 46: 35: 70: 35: 35:	9 7 7 7 3 3 00 12 2 2 4 4 1 1 1 2 2 8 8 8
Option 81 Maximum start-up Circuit A Circuit B Option 81 Cosine phi Nominal*** Maximum power in Circuit A Circuit B Option 81 Nominal current d Circuit B Option 81 Maximum current Circuit A Circuit B Option 81 Maximum current Circuit A Circuit A Circuit B Option 81 Circuit A Circuit A Circuit A Circuit A Circuit A Circuit B Option 81	nput† rawn*** drawn (Ur	n -10%)	A A A A A A A A A A A A A A A A A A A			- - - 414 - - - 0.86 0.90 151 - - - - - - - - - - - - - - - - - -	900			7 39 91 0 4 7	587 - - 0.90 0.92 223 - - - 351 - - -	4 4 55 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	14 56 14 14 131 86 89 34 34 36 37 44 44 43 38	414 574 414 414 656 0.87 0.90 151 151 1301 162 162 324 242 242 484	44 77 55 88 00 01 11 13 33 22 55	114 147 1887 1114 329 1.88 1.90 1.84 1.51 1.334 1.93 1.62 1.93 1.	587 780 587 587 882 0.88 0.90 184 184 367 193 386 295 295 590		587 801 587 587 904 0.89 0.91 200 200 399 214 214 427 317 317 634 340	58 81! 588 930 0.9 0.9 222 244 44: 23: 46: 35 35 70:	9 7 7 7 3 3 00 12 2 2 4 4 1 1 1 2 2 8 8 8
Option 81 Maximum start-up Circuit A Circuit B Option 81 Cosine phi Nominal*** Maximum power in Circuit A Circuit B Option 81 Nominal current d Circuit A Circuit B Option 81 Maximum current Circuit A Circuit B Option 81 Maximum current Circuit A Circuit A Circuit A Circuit A Circuit A Circuit A Circuit B Option 81 Maximum current Circuit A Circuit A Circuit A Circuit A Circuit B Option 81 Maximum current Circuit B Option 81	nput† rawn*** drawn (Ur	n -10%)	A A A A A A A A A A A A A A A A A A A					587 - - 0.88 0.90 184 - - 193 - - - 304	588	7	587 	4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	14 14 14 14 31 86 89 34 34 34 37 44 44 438 17 17 34	414 574 414 414 656 0.87 0.90 151 151 301 162 162 324 242 242 484 260 260 520	44 77 54 88 00 01 11 11 12 33 22 55	114 747 587 114 329 0.88 0.90 184 151 334 193 162 355 295 242 537	587 780 587 587 882 0.88 0.90 184 184 367 193 386 295 590 304 608		587 801 587 587 904 0.89 0.91 200 200 399 214 214 427 317 634 340 680	58 819 588 930 0.9 0.9 222 244 233 460 355 700 356 357	7 7 7 7 3 3 3 3 3 7 2 2 2 4 4 1 1 1 2 2 8 8 8 8 6 6
Option 81 Maximum start-up Circuit A Corcuit B Option 81 Cosine phi Nominal*** Maximum **** Maximum power in Circuit A Circuit B Option 81 Nominal current d Circuit A Circuit B Option 81 Maximum current Circuit A Circuit A Circuit A Circuit A Circuit A Circuit B Option 81 Maximum current Circuit A Circuit B Option 81	nput† rawn*** drawn (Ur	n -10%)	A A A A A A A A A A A A A A A A A A A			- - - 414 - - - 0.86 0.90 151 - - - - - - - - - - - - - - - - - -				7	587 - - 0.90 0.92 223 - - - 351 - - -	4 55 4 4 4 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6	14	414 574 414 414 656 0.87 0.90 151 151 1301 162 162 324 242 242 484 260 260 520	44 77 54 88 00 01 11 11 33 22 55 55	114 147 1887 114 1329 1.88 1.90 1.88 1.90 1.84 1.51 1.334 1.93 1.62 1.93 1.95 1.	587 780 587 587 882 0.88 0.90 184 184 367 193 386 295 590 304 304 608		587 801 587 587 904 0.89 0.91 200 200 399 214 214 227 317 317 634 340 680	58 81! 588 936 0.9 0.9 22: 22: 44' 233 46: 35 35 70: 356 371	7 7 7 8 8 90 92 2 2 2 4 4 1 1 1 2 2 7
Option 81 Maximum start-up Circuit A Circuit B Option 81 Cosine phi Nominal*** Maximum power in Circuit A Circuit B Option 81 Nominal current d Circuit A Circuit B Option 81 Maximum current Circuit B Circuit B Cotion 81 Maximum current Circuit B Circuit A Circuit B Circuit A Circuit B Circuit B Circuit A Circuit B	nput† rawn*** drawn (Ur	n -10%)	A A A A A A A A A A A A A A A A A A A			- - - - - - - - - - - - - - - - - - -		587 - - 0.88 0.90 184 - - - 295 - - 304 - -		7	587 - 0.90 0.92 223 232 351 358 207	4 4 55 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	14	414 574 414 414 656 0.87 0.90 151 151 301 162 162 324 242 242 484 260 260 520	44 77 52 88 00 01 11 13 33 22 25 53 24 54	84 51 51 51 51 51 51 51 51 51 51	587 780 587 587 882 0.88 0.90 184 184 367 193 386 295 590 304 304 608		587 801 587 587 904 0.89 0.91 200 200 200 399 214 214 427 317 634 340 680	58 81! 588 93i 0.9 0.9 222 222 44: 233 233 466 35 35 702 356 711	7 7 7 8 8 90 92 2 2 4 1 1 1 1 2 2 8 8 8 6 6
Option 81 Maximum start-up Circuit A Circuit B Option 81 Cosine phi Nominal*** Maximum power in Circuit A Circuit B Option 81 Nominal current d Circuit A Circuit B Option 81 Maximum current Circuit A Circuit B Option 81 Maximum current Circuit A Circuit B Option 81 Maximum current Circuit A Circuit B Circuit A Circuit B Circuit A Circuit B Circuit B Circuit Circuit B Circuit A Circuit B Circuit B Circuit B Coption 81	rawn*** drawn (Ur drawn (Ur	option	A A A A A A A A A A A A A A A A A A A	150B1		- - - - - - - - - - - - - - - - - - -		587 - - 0.88 0.90 184 - - - 295 - - 304 - -		7	587 - 0.90 0.92 223 232 351 358 207	4 4 55 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	14	414 574 414 414 656 0.87 0.90 151 151 1301 162 162 324 242 242 484 260 260 520	44 77 52 88 00 01 11 13 33 22 25 53 24 54	114 147 1887 114 1329 1.88 1.90 1.88 1.90 1.84 1.51 1.334 1.93 1.62 1.93 1.95 1.	587 780 587 587 882 0.88 0.90 184 184 367 193 386 295 590 304 304 608		587 801 587 587 904 0.89 0.91 200 200 399 214 214 227 317 317 634 340 680	58 81! 588 936 0.9 0.9 22: 22: 44' 233 46: 35 35 70: 356 371	9 7 7 7 8 8 8 8 8 6 7
Option 81 Maximum start-up Circuit A Circuit B Option 81 Cosine phi Nominal*** Maximum power in Circuit A Circuit B Option 81 Nominal current d Circuit A Circuit B Option 81 Maximum current Circuit B Circuit B Option 81 Maximum current Circuit B Circuit B Option 81 Maximum current Circuit B Circuit A Circuit B	rawn*** drawn (Ur drawn (Ur	option	A A A A A A A A A A A A A A A A A A A	1508†				587 - - 0.88 0.90 184 - - 193 - - - 304 - -		7	587 	4 4 55 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	14	414 574 414 414 656 0.87 0.90 151 151 301 162 162 324 242 242 484 260 260 520	44 77 5 5 4 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	114 747 587 114 329 0.88 0.90 184 151 334 193 162 335 242 337 304 260 364 173 133 305	587 780 587 587 882 0.88 0.90 184 184 367 193 386 295 590 304 608 173 346		587 801 587 587 904 0.89 0.91 200 200 200 399 214 214 427 317 634 340 680	58 81! 588 93i 0.9 0.9 222 222 44: 233 233 466 35 35 702 356 711	9 7 7 7 7 3 3 10 9 2 2 2 4 4 1 1 1 2 2 8 8 8 6 6
Option 81 Maximum start-up Circuit A Circuit B Option 81 Cosine phi Nominal*** Maximum power in Circuit A Circuit B Option 81 Mominal current d Circuit A Circuit B Option 81 Maximum current Circuit A Circuit B Option 81 Maximum current Circuit A Circuit B Circuit B Circuit Circuit A Circuit B Circuit Circuit A Circuit B Circuit A Circuit A Circuit A Circuit A Circuit B Coption 81 Maximum power in Circuit A Circuit B Option 81 Maximum power in Circuit B Option 81 Maximum current	rawn*** drawn (Ur drawn (Ur	option	A A A A A A A A A A A A A A A A A A A	150B†		- - - - - - - - - - - - - - - - - - -		587 - - 0.88 0.90 184 - - - 295 - - 304 - -	588	7	587 - 0.90 0.92 223 232 351 358 207	4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	14 14 14 14 131 86 89 34 34 34 36 17 17 17 34 30 30 60	414 574 414 414 656 0.87 0.90 151 151 301 162 162 324 242 242 484 260 260 520	44 77 54 88 00 01 11 11 33 22 55 11 13 33	84 51 51 51 51 51 51 51 51 51 51	587 780 587 587 882 0.88 0.90 184 184 367 193 386 295 590 304 304 608		587 801 587 587 904 0.89 0.91 200 200 399 214 214 427 317 634 340 680 183 183 365	58 819 58 930 0.9 0.9 222 222 444 233 460 35 35 700 356 371 200 201 411	9 7 7 7 3 3 0 0 2 2 2 4 1 1 1 1 2 2 8 8 8 6 6 7 7 7 4 4 5 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Instantaneous start-up current (maximum operating current of the smallest compressor(s) + locked rotor current or reduced start-up current of the largest compressor). Values obtained at standard Eurovent conditions: evaporator entering/leaving water temp. = 12°C/7°C, condenser entering/leaving water temp. = 30°C/35°C. Instantaneous start-up current (maximum operating current of the smallest compressor(s) + locked rotor current or reduced start-up current of the largest compressor). Values obtained at operation with maximum unit power input. Values obtained at standard Eurovent conditions: evaporator entering/leaving water temp. = 12°C/7°C, condenser entering/leaving water temp. = 30°C/35°C

Values obtained at operation with maximum unit power input.

Values obtained at operation with maximum unit power input. Values given on the unit name plate.

4.3 - Short-circuit stability current for all units

Short-circuit stability current for all units using the TN system (earthing system type): 50 kA (conditional system short-circuit current Icc/Icf at the unit connection point as rms value).

All units are equipped with protection fuses located in the control box immediately downstream from the unit connection point.

4.4 - Compressor electrical data 30XW

Compressor	I Nom (A)*	I Max (A)**	I Max (A)** Option 150B	MHA (A)	LRYA (A)	LRDA (A)	Cosine phi nom.*	Cosine phi max.**
06TTW266	84	123	109	138	233	725	0.83	0.89
06TTW301	96	145	129	162	233	725	0.85	0.89
06TTW356	113	160	142	178	303	945	0.83	0.88
06TUW483	144	217	191	230	414	1290	0.88	0.90
06TUW554	162	242	212	260	414	1290	0.89	0.90
06TVW680	193	295	278	304	587	1828	0.88	0.90
06TVW753	214	317	290	340	587	1828	0.89	0.91
06TVW819	232	351	325	358	587	1828	0.90	0.91
06TTA266	95	160	125	176	303	945	0.79	0.88
06TTA301	109	185	144	206	388	1210	0.78	0.87
06TTA356	125	200	156	224	388	1210	0.81	0.88
06TUA483	162	275	215	300	587	1828	0.85	0.91
06TUA554	171	300	234	330	587	1828	0.85	0.91
06TVA680	210	400	312	419	772	2315	0.85	0.91
06TVA753	230	430	335	455	772	2315	0.86	0.91
06TVA819	250	460	359	476	772	2315	0.87	0.91

 $Value\ at\ standard\ Eurovent\ conditions:\ evaporator\ entering/leaving\ water\ temperature=12°C/7°C,\ condenser\ entering/leaving\ water\ temperature=30°C/35°C.$

MHA - Maximum compressor operating current, limited by the unit (current given for maximum capacity at 360 V)

LRYA - Locked rotor current for star connection (connection during compressor start-up)

LRDA - Locked rotor current for delta connection

4.5 - Compressor usage per circuit (A, B)

30XW	252	302	352	402 452 512	552 562 602	652 712	702 812	802 852 862	1002	1012	1052 1152 1162	1252 1312	1352 1462	1452 1612	1552 1702 1762	1652
Units withou	t option	150														
06TTW266	Α	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
06TTW301	-	Α	-	-	-	-	-	-	-	-	-	-	-	-	-	-
06TTW356	-	-	Α	-	-	-	-	-	-	-	-	-	-	-	-	-
06TUW483	-	-	-	Α	-	-	-	-	В	AB	-	-	-	-	-	-
06TUW554	-	-	-	-	Α	-	-	-	Α	-	AB	В	-	-	-	-
06TVW680	-	-	-	-	-	Α	-	-	-	-	-	Α	AB	-	-	-
06TVW753	-	-	-	-	-	-	Α	-	-	-	-	-	-	AB	-	В
06TVW819	-	-	-	-	-	-	-	Α	-	-	-	-	-	-	AB	Α
Units with or	tion 150)														
06TTA266	Α	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
06TTA301	-	Α	-	-	-	-	-	-	-	-	-	-	-	-	-	-
06TTA356	-	-	Α	-	-	-	-	-	-	-	-	-	-	-	-	-
06TUA483	-	-	-	Α	-	-	-	-	В	AB	-	-	-	-	-	-
06TUA554	-	-	-	-	Α	-	-	-	Α	-	AB	В	-	-	-	-
06TVA680	-	-	-	-	-	Α	-	-	-	-	-	Α	AB	-	-	-
06TVA753	-	-	-	-	-	-	Α	-	-	-	-	-	-	AB	-	В
06TVA819	-	-	-	-	-	-	-	Α	-	-	-	-	-	-	AB	Α

Value at maximum capacity and nominal voltage (400 V)

Electrical data notes and operating conditions, 30XW units

· As standard:

 $30 XW\ 252$ to 862 units have a single power connection point located immediately upstream of the main disconnect switch.

30XW 1002 to 1762 units have two connection points located immediately upstream of the main disconnect switches.

- The control box includes the following standard features:
 - One main disconnect switch per circuit*
 - Starter and motor protection devices for each compressor
 - Anti-short cycle protection devices*
 - Control devices
- Field connections:

All connections to the system and the electrical installations must be in full accordance with all applicable codes.

- The Carrier 30XW units are designed and built to ensure conformance with local codes. The recommendations of European standard EN 60204-1 (corresponds to IEC 60204-1) (machine safety - electrical machine components - part 1: general regulations) are specifically taken into account, when designing the electrical equipment.
- The absence of power supply disconnect switch(es) and short-cycle protection devices in option 82A is an important factor that has to be taken into consideration at the installation site.
 - Units equipped with one of these two options are supplied with a declaration of incorporation, as required by the machinery directive.

Notes:

- Generally the recommendations of IEC 60364 are accepted as compliance with the requirements of the installation directives. Conformance with EN 60204-1 is the best means of ensuring compliance with the Machines Directive.
- Annex B of EN 60204 1 describes the electrical characteristics used for the operation of the machines.

- 1. The operating environment for the 30XW units is specified below:
- Environment** Environment as classified in EN 60721 (corresponds to IEC 60721):
 - indoor installatior
 - ambient temperature range: minimum temperature +5°C to +42°C, class AA4
 - altitude: lower than or equal to 2000 m
 - presence of water: class AD2 (possibility of water droplets)
 - presence of hard solids, class 4S2 (no significant dust present)
 - presence of corrosive and polluting substances, class 4C2 (negligible)
- 2. Power supply frequency variation: ± 2 Hz.
- The neutral (N) line must not be connected directly to the unit (if necessary use a transformer).
- Overcurrent protection of the power supply conductors is not provided with the unit.
- The factory installed disconnect switch(es)/circuit breaker(s) is (are) of a type suitable for power interruption in accordance with EN 60947-3 (corresponds to IEC 60947-3).
- The units are designed for connection to TN networks (IEC 60364). For IT
 networks the earth connection must not be at the network earth. Provide a
 local earth, consult competent local organisations to complete the electrical
 installation.

NOTE: If particular aspects of an actual installation do not conform to the conditions described above, or if there are other conditions which should be considered, always contact your local Carrier representative.

- * Not provided for units equipped with option 82A
- ** The required protection level for this class is IP21BW or IPX1B (according to reference standard IEC 60529). All 30XW units fulfil this protection condition. In general the casings fulfil class IP23.

Please note that for machine sizes 652 to 852 equipped with option 150 access to the motor terinals is classified as IPX3B.

5 - ELECTRICAL CONNECTION

Please refer to the certified dimensional drawings, supplied with the unit.

5.1 - Power supply

The power supply must conform to the specification on the unit nameplate. The supply voltage must be within the range specified in the electrical data table. For connection details refer to the wiring diagrams.

WARNING: Operation of the chiller with an improper supply voltage or excessive phase imbalance constitutes abuse which will invalidate the Carrier warranty. If the phase imbalance exceeds 2% for voltage, or 10% for current, contact your local electricity supplier at once and ensure that the chiller is not switched on until corrective measures have been taken.

5.2 - Voltage phase imbalance (%)

100 x max. deviation from average voltage
Average voltage

Example:

On a $400\,\mathrm{V}$ - $3\,\mathrm{ph}$ - $50\,\mathrm{Hz}$ supply, the individual phase voltages were measured to be:

AB = 406 V; BC = 399 V; AC = 394 V

Average voltage = (406 + 399 + 394)/3 = 1199/3= 399.7 say 400 V Calculate the maximum deviation from the 400 V average:

$$(AB) = 406 - 400 = 6$$

$$(BC) = 400 - 399 = 1$$

$$(CA) = 400 - 394 = 6$$

The maximum deviation from the average is 6 V. The greatest percentage deviation is: $100 \times 6/400 = 1.5 \%$

This is less than the permissible 2% and is therefore acceptable.

5.3 - Power connection/disconnect switch

Units Connection points
30XW 252-862 1 per unit
30XW 1002-1762 1 for circuit A
1 for circuit B

5.4 - Recommended wire sections

Wire sizing is the responsibility of the installer, and depends on the characteristics and regulations applicable to each installation site. The following is only to be used as a guideline, and does not make in any way liable. After wire sizing has been completed, using the certified dimensional drawing, the installer must ensure easy connection and define any modifications necessary on site. The connections provided as standard for the field-supplied power entry cables to the general disconnect/isolator switch are designed for the number and type of wires, listed in the second column of the table below.

The calculations for favourable and unfavourable cases are based on the maximum current for each unit (see electrical data tables). For the design the standardised installation methods in accordance with IEC 60364 are used: multiconductor PVC (70°C) or XLPE (90°C) insulated cables with copper core; arrangement to comply with table 52c of the above standard. The maximum temperature is 42°C. The given maximum length is calculated to limit the voltage drop to 5%.

5.5 - Power cable entry

The power cables can enter the 30XW control box from above the unit. A removable aluminium plate on the upper part of the control box face allows introduction of the cables. Refer to the certified dimensional drawing for the unit.

5.6 - Field control wiring

Refer to the 30XA/30XW Pro-Dialog Control manual and the certified wiring diagram supplied with the unit for the field control wiring of the following features:

- Customer interlock
- Remote on/off switch
- Demand limit external switch
- Remote dual set point
- Alarm, alert and operation report
- Evaporator pump control
- Heat reclaim condenser pump control (option)
- Hot water valve control (option)
- Various interlocks on the Energy Management Module (EMM) board (accessory or option)

Minimum and maximum connectable wire sections for 30XW units

	Connectable wire section*	Calculation favour Perforated horizon XLPE insulated ca	tal conduit (stanc	lardised routing No. 15)	Calculation unfav Closed conduit (s PVC insulated cal	standardised ro	outing No. 41)
30XW - Circuit(s) A(/B)	Section	Section**	Max. length	Cable type	Section**	Max. length	Cable type***
	mm ² (per phase)	mm² (per phase)	m		mm² (per phase)	m	
Units without option 150	or 81				*		
252 - 302	1 x 150	1 x 50	160	XLPE Cu	1 x 95	310	PVC Cu
352	1 x 240	1 x 70	220	XLPE Cu	1 x 95	350	PVC Cu
402	1 x 240	1 x 70	170	XLPE Cu	1 x 150	350	PVC Cu
452 - 512	1 x 240	1 x 95	230	XLPE Cu	1 x 185	390	PVC Cu
552 - 562 - 602	1 x 240	1 x 95	275	XLPE Cu	1 x 185	360	PVC Cu
652 - 712	1 x 240	1 x 120	210	XLPE Cu	1 x 240	380	PVC Cu
702 - 812	1 x 240	1 x 150	230	XLPE Cu	1 x 240	330	XLPE Cu
802 - 852 - 862	1 x 240	1 x 150	217	XLPE Cu	1 x 240	320	XLPE Cu
1002	2 x 240/2 x 240	1 x 95/1 x 95	200/200	XLPE Cu	1 x 240/1 x 240	400/400	PVC Cu
1012	2 x 240/2 x 240	1 x 120/1 x 95	230/200	XLPE Cu	1 x 240/1 x 240	400/401	PVC Cu
1052 - 1152 - 1162	2 x 240/2 x 240	1 x 120/1 x 120	220/220	XLPE Cu	2 x 120/2 x 120	375/375	PVC Cu
1252 - 1312	2 x 240/2 x 240	1 x 150/1 x 120	220/220	XLPE Cu	2 x 185/2 x 120	410/375	PVC Cu
1352 - 1462	2 x 240/2 x 240	1 x 150/1 x 150	220/220	XLPE Cu	2 x 185/2 x 185	410/410	PVC Cu
1452 - 1612	2 x 240/2 x 240	1 x 185/1 x 185	230/230	XLPE Cu	2 x 185/2 x 185	370/370	PVC Cu
1552 - 1702 - 1762	2 x 240/2 x 240	1 x 185/1 x 185	220/220	XLPE Cu	2 x 240/2 x 240	400/400	PVC Cu
1652	2 x 240/2 x 240	1 x 185/1 x 185	220/230	XLPE Cu	2 x 240/2 x 185	400/400	PVC Cu
Units with option 150							
252 - 302	1 x 240	1 x 70	190	XLPE Cu	1 x 150	370	PVC Cu
352	1 x 240	1 x 70	170	XLPE Cu	1 x 185	400	PVC Cu
402	1 x 240	1 x 95	190	XLPE Cu	1 x 240	420	PVC Cu
452 - 512	1 x 240	1 x 120	210	XLPE Cu	1 x 185	290	PVC Cu
552 - 562 - 602	1 x 240	1 x 120	210	XLPE Cu	1 x 240	340	XLPE Cu
652 - 712	2 x 240	1 x 240	275	XLPE Cu	2 x 150	320	XLPE Cu
702 - 812	2 x 240	1 x 240	250	XLPE Cu	2 x 150	300	XLPE Cu
802 - 852 - 862	2 x 240	2 x 240	240	XLPE Cu	2 x 150	280	XLPE Cu
1002	2 x 240/2 x 240	1 x 150/1 x 150	220/230	XLPE Cu	2 x 150/2 x 150	310/340	PVC Cu
1012	2 x 240/2 x 240	1 x 150/1 x 150	220/220	XLPE Cu	2 x 185/2 x 185	410/410	XLPE Cu
1052 - 1152 - 1162	2 x 240/2 x 240	1 x 150/1 x 150	210/210	XLPE Cu	2 x 185/2 x 185	400/400	PVC Cu
1252 - 1312	2 x 240/2 x 240	1 x 240/1 x 150	240/210	XLPE Cu	2 x 185/2 x 185	310/400	XLPE Cu /PVC C
1352 - 1462	2 x 240/2 x 240	1 x 240/1 x 240	240/240	XLPE Cu	2 x 185/2 x 185	310/310	XLPE Cu
1452 - 1612	2 x 240/2 x 240	2 x 120/2 x 120	220/220	XLPE Cu	2 x 240/2 x 185	320/310	XLPE Cu
1552 - 1652 - 1702 - 1762	2 x 240/2 x 240	2 x 120/2 x 120	210/210	XLPE Cu	2 x 240/2 x 240	320/320	XLPE Cu
Units with option 81							
1002 to 1162	4 x 240	2 x 150	220	XLPE Cu	4 x 120	375	PVC Cu
1252 to 1762	4 x 240	4 x 120	210	XLPE Cu	4 x 240	400/400	PVC Cu
Units with options 81 and							
1002 to 1162	4 x 240	2 x 185	220	XLPE Cu	4 x 150	310	XLPE Cu
1252 to 1762	5 x 240	4 x 120	210	XLPE Cu	4 x 240	320	XLPE Cu

^{*} Connection capacities actually available for each machine, defined according to the connection terminal size, the control box access opening size and the available space inside the control box.

Note: The currents considered are given for a machine equipped with a hydronic kit operating at maximum current.

^{**} Selection simultation result considering the hypothesis indicated.

^{***} If the maximum calculated section is for an XLPE cable type, this means that a selection based on a PVC cable type can exceed the connection capacity actually available. Special attention must be given to the selection.

CCN bus connection

- The permanent connection to the system CCN bus is made at the terminal provided for this purpose inside the control box.
- The connection of the CCN service tool is possible at a socket under the control box, accessible from outside.

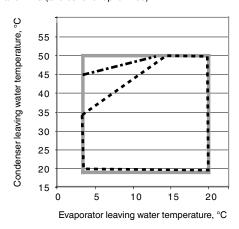
5.7 - 24 and 230 V power reserve for the user

Control circuit reserve:

After all required options have been connected, the TC transformer includes a power reserve that can be used for the field control wiring:

Unit without option 084* 2 A (24 V a.c.) or 48 VA Unit with option 084* 1.3 A (24 V a.c.) or 30 VA * 084 or 084R or 084D

At this TC transformer the 230 V. 50 Hz circuit allows the supply of a battery charger for a portable computer at 0.8 A maximum at 230 V. The connection is via an EEC 7/16 type socket (2 poles without earth) located under the control box and accessible from outside. Only devices with class II double insulation can be connected at this socket.


6 - APPLICATION DATA

6.1 - Operating limits for 30XW units

30XW/30XW-P	Minimum	Maximum
Evaporator		
Entering temperature at start-up	-	35.0°C
Leaving temperature during operation	3.3°C*	20.0°C
Entering/leaving temperature difference at full load	2.8 K	11.1 K
Condenser		
Entering temperature at start-up	13.0°C**	-
Leaving temperature during operation	19.0°C**	50.0°C***
Entering/leaving temperature difference at full load	2.8 K	11.1 K

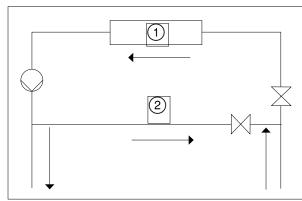
- For low-temperature applications, where the leaving water temperature is below 3.3°C, a frost protection solution must be used. Please refer to option 5 and option 6.
- For lower condenser temperatures a water flow control valve must be used at the condenser (two or three-way valve). Please refer to option 152 to ensure the correct condensing temperature.
- Please refer to option 150 for applications with a high condenser leaving temperature (up to 63°C).

Note: Ambient temperatures: During storage and transport of the 30XW units (including by container) the minimum and maximum permissible temperatures are -20°C and 72°C (and 65°C for option 200).

From approx. 45% to full load

Part load limit approx. 35%

Minimum load limit approx.15%

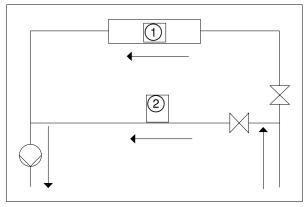

For more precise details refer to the unit selection program.

6.2 - Minimum chilled water flow

The minimum chilled water flow is shown in the table in chapter 6.6.

If the system flow is less than the minimum unit flow rate, the evaporator flow can be recirculated, as shown in the diagram.

For minimum chilled water flow rate


- Evaporator
- Recirculation

6.3 - Maximum chilled water flow

The maximum chilled water flow is limited by the permitted pressure drop in the evaporator. It is provided in the table

- Select the option with one water pass less that will allow a higher maximum water flow rate (see option 100C in the table in chapter 6.5).
- Bypass the evaporator as shown in the diagram to obtain a lower evaporator flow rate.

For maximum chilled water flow rate

- Evaporator
- Bypass

6.4 - Condenser water flow rate

The minimum and maximum condenser water flow rates are shown in the table in chapter 6.6.

If the system flow is higher than the maximum unit flow rate, select the option with one pass less that will allow a higher maximum water flow rate. Please refer to option 102C in the table in chapter 6.5.

6.5 - Standard and optional number of water passes

Standard-effi	ciency	units 30	DXW																	
Size	252	302	352	402	452	552	602	652	702	802	852	1002	1052	1152	1252	1352	1452	1552	1652	1702
Evaporator																				
Standard	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Option 100C	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Condenser																				
Standard	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Option 102C	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

High-efficiency units 30	XW-P										
Size	512	562	712	812	862	1012	1162	1312	1462	1612	1762
Evaporator											
Standard	2	2	2	2	2	2	2	2	2	2	2
Option 100C	1	1	1	1	1	1	1	1	1	1	1
Condenser											
Standard	2	2	2	2	2	2	2	2	2	2	2
Option 102C	1	1	1	1	1	1	1	1	1	1	1

6.6 - Evaporator and condenser water flow rates

Standard-efficiency units 30X	N																			
Size	252	302	352	402	452	552	602	652	702	802	852	1002	1052	1152	1252	1352	1452	1552	1652	1702
Evaporator water flow rate, I/s																				
Minimum	6	6	6	7	7	7	7	9	9	9	9	13	13	15	18	18	18	18	22	22
Maximum	39	39	39	39	43	43	43	57	57	57	61	67	67	78	84	84	84	84	116	116
Condenser water flow rate, I/s																				
Minimum	4	4	4	4	4	4	4	6	6	6	8	8	8	9	12	12	12	12	14	14
Maximum	29	29	29	29	47	47	47	55	55	55	82	82	82	109	119	119	119	119	134	134

High-efficiency units	30XW-P										
Size	512	562	712	812	862	1012	1162	1312	1462	1612	1762
Evaporator water flow	v rate, I/s										
Minimum	10	10	13	13	13	18	18	22	22	28	28
Maximum	57	57	76	76	76	84	84	116	116	121	121
Condenser water flow	v rate, I/s										
Minimum	6	6	8	8	8	12	12	18	18	22	22
Maximum	55	55	74	74	74	119	119	130	130	149	149

Notes

- Minimum evaporator flow rate based on a water velocity of 0,5 m/s.
- Minimum condenser flow rate based on a water velocity of 0,3 m/s.
- Maximum flow rate based on a pressure drop of 120 kPa (units with two evaporator passes and two condenser passes).

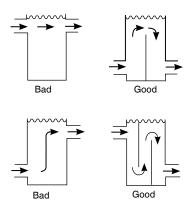
6.7 - Variable flow evaporator

Variable evaporator flow can be used. The controlled flow rate must be higher than the minimum flow given in the table of permissible flow rates and must not vary by more than 10% per minute.

If the flow rate changes more rapidly, the system should contain a minimum of 6.5 litres of water per kW instead of 3.25 l/kW.

6.8 - System minimum water volume

Whichever the system, the water loop minimum volume is given by the formula: Volume = $Cap(kW) \times N$ litres

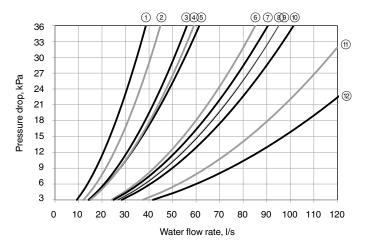

Application	N	
Normal air conditioning	3.25	
Process type cooling	6.5	

Where Cap is the nominal system cooling capacity (kW) at the nominal operating conditions of the installation.

This volume is necessary for stable operation.

It is often necessary to add a buffer water tank to the circuit in order to achieve the required volume. The tank must itself be internally baffled in order to ensure proper mixing of the liquid (water or brine). Refer to the examples below.

Connection to a buffer tank

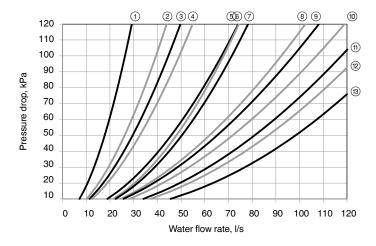


6.9 - Evaporator pressure drop curves

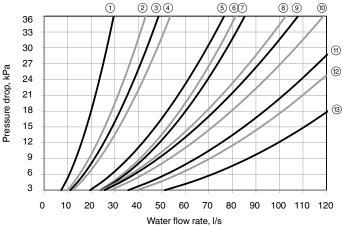
Units with two evaporator passes (standard): 30XW--/30XWH-/30XW-P/30XWHP

3456 78910 11 (12) 120 110 100 90 Pressure drop, kPa 80 70 60 50 40 30 20 10 10 20 30 70 90 100 110 120 Water flow rate. I/s

Units with one evaporator pass (option 100C): 30XW--/30XWH-/30XW-P/30XWHP


- 252, 302, 352
- 12345678991 402, 452, 552, 602
- 512, 562
- 652, 702, 802
- 852
- 1002, 1052
- 1152
- 712, 812, 862
- 1012.1162
- 1252, 1352, 1452, 1552
- 1312, 1462, 1652, 1702
- 1612, 1762

- 1 252, 302, 352 2 402, 452, 552, 3 512, 562 4 652, 702, 802 5 852 6 1002, 1052 7 1012,1162 8 1252, 1352, 14
- 402, 452, 552, 602


- 1252, 1352, 1452, 1552
- 9 712, 8 10 1152 712, 812, 862
- 1312, 1462, 1652, 1702
- (1) 1312, 1462, (12) 1612, 1762

6.10 - Condenser pressure drop curves

Units with two condenser passes (standard): 30XW--/30XWH-/30XW-P/30XWHP

Units with one condenser pass (option 102C): 30XW--/30XWH-/30XW-P/30XWHP

- 252, 302, 352
- 402, 452, 552, 602
- 512, 562
- 652, 702, 802 712, 812, 862
- 852
- 1002, 1052
- 1152
- 1012,1162
- 1252, 1352, 1452, 1552
- 234567899123 1312, 1462
- 1652, 1702 1612, 1762

- ① 252, 302, 352 ② 402, 452, 552, 602
- (2) 402, 452, 552, (3) 512, 562 (4) 652, 702, 802 (5) 712, 812, 862 (6) 852 (7) 1052 (8) 1152

- (9) 1012,1162 (10) 1252, 1352, (11) 1312, 1462 (12) 1652, 1702 (13) 1612, 1762 1252, 1352, 1452, 1552

7 - WATER CONNECTIONS

ATTENTION: Before carrying out any water connections install the water box purge plugs (one plug per water box in the lower section - supplied in the control box).

For size and position of the heat exchanger water inlet and outlet connections refer to the certified dimensional drawings supplied with the unit.

The water pipes must not transmit any radial or axial force to the heat exchangers nor any vibration.

The water supply must be analysed and appropriate filtering, treatment, control devices, isolation and bleed valves and circuits built in, to prevent corrosion, fouling and deterioration of the pump fittings. Consult either a water treatment specialist or appropriate literature on the subject.

7.1 - Operating precautions

The water circuit should be designed to have the least number of elbows and horizontal pipe runs at different levels. Below the main points to be checked for the connection:

- Comply with the water inlet and outlet connections shown on the unit.
- Install manual or automatic air purge valves at all high points in the circuit(s).
- Use a pressure reducer to maintain pressure in the circuit(s) and install a safety valve as well as an expansion tank.
- Install thermometers in both the entering and leaving water connections.
- Install drain connections at all low points to allow the whole circuit to be drained.
- Install stop valves, close to the entering and leaving water connections.
- Use flexible connections to reduce the transmission of vibrations.
- Insulate all pipework, after testing for leaks, both to reduce heat gains and to prevent condensation.
- Cover the insulation with a vapour barrier.
- Where there are particles in the fluid that could foul the heat exchanger, a screen filter should be installed ahead of the pump. The mesh size of the filter must be 1.2 mm.
- Before the system start-up verify that the water circuits are connected to the appropriate heat exchangers (e.g. no reversal between evaporator and condenser).
- Do not introduce any significant static or dynamic pressure into the heat exchange circuit (with regard to the design operating pressures).
- Before any start-up verify that the heat exchange fluid is compatible with the materials and the water circuit coating.

In case additives or other fluids than those recommended by Carrier are used, ensure that the fluids are not considered as a gas, and that they belong to class 2, as defined in directive 97/23/EC.

Carrier recommendations on heat exchange fluids:

- No NH⁴⁺ ammonium ions in the water, they are very detrimental for copper. This is one of the most important factors for the operating life of copper piping. A content of several tenths of mg/l will badly corrode the copper over time.
- Cl⁻ Chloride ions are detrimental for copper with a risk of perforations by corrosion by puncture. If possible keep below 10 mg/l.
- SO₄² sulphate ions can cause perforating corrosion, if their content is above 30 mg/l.
- No fluoride ions (<0.1 mg/l).
- No Fe²⁺ and Fe³⁺ ions with non negligible levels of dissolved oxygen must be present. Dissolved iron < 5 mg/l with dissolved oxygen < 5 mg/l.
- Dissolved silicon: silicon is an acid element of water and can also lead to corrosion risks. Content < 1 mg/l.
- Water hardness: > 0.5 mmol/l. Values between 1 and 2.5 can be recommended. This will facilitate scale deposit that can limit corrosion of copper. Values that are too high can cause piping blockage over time. A total alkalimetric titre (TAC) below 100 mg/l is desirable.
- Dissolved oxygen: Any sudden change in water oxygenation conditions must be avoided. It is as detrimental to deoxygenate the water by mixing it with inert gas as it is to over-oxygenate it by mixing it with pure oxygen. The disturbance of the oxygenation conditions encourages destabilisation of copper hydroxides and enlargement of particles.
- Specific resistance electric conductivity: the higher the specific resistance, the slower the corrosion tendency. Values above 30 Ohm·m are desirable. A neutral environment favours maximum specific resistance values. For electric conductivity values in the order of 20-60 mS/m can be recommended.
- pH: Ideal case pH neutral at 20-25°C 7 < pH < 8

If the water circuit must be emptied for longer than one month, the complete circuit must be placed under nitrogen charge to avoid any risk of corrosion by differential aeration.

Charging and removing heat exchange fluids should be done with devices that must be included on the water circuit by the installer. Never use the unit heat exchangers to add heat exchange fluid.

7.2 - Water connections

The water connections are Victaulic type connections. The inlet and outlet connection diameters are identical.

Inlet/outlet diameters

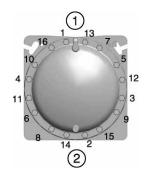
Size		252	302	352	402	452	552	602	652	702	802	852	1002	1052	1152	1252	1352	1452	1552	1652	1702
Evaporator																					
Units without option 1	00C																				
Nominal diameter	in	5	5	5	5	5	5	5	6	6	6	6	6	6	8	8	8	8	8	8	8
Actual outside diameter	mm	141.3	141.3	141.3	141.3	141.3	141.3	141.3	168.3	168.3	168.3	168.3	168.3	168.3	219.1	219.1	219.1	219.1	219.1	219.1	219.1
Option 100C																					
Nominal diameter	in	5	5	5	6	6	6	6	6	6	6	6	6	6	8	8	8	8	8	8	8
Actual outside diameter	mm	141.3	141.3	141.3	168.3	168.3	168.3	168.3	168.3	168.3	168.3	168.3	168.3	168.3	219.1	219.1	219.1	219.1	219.1	219.1	219.1
Condenser																					
Units without option 1	02C																				
Nominal diameter	in	5	5	5	5	5	5	5	6	6	6	8	8	8	8	8	8	8	8	8	8
Actual outside diameter	mm	141.3	141.3	141.3	141.3	141.3	141.3	141.3	168.3	168.3	168.3	219.1	219.1	219.1	219.1	219.1	219.1	219.1	219.1	219.1	219.1
Option 102C																					
Nominal diameter	in	6	6	6	6	6	6	6	8	8	8	8	8	8	8	8	8	8	8	8	8
Actual outside diameter	mm	168.3	168.3	168.3	168.3	168.3	168.3	168.3	219.1	219.1	219.1	219.1	219.1	219.1	219.1	219.1	219.1	219.1	219.1	219.1	219.1

Size		512	562	712	812	862	1012	1162	1312	1462	1612	1762
Evaporator												
Units without option 10	00C											
Nominal diameter	in	6	6	8	8	8	8	8	8	8	10	10
Actual outside diameter	mm	168.3	168.3	219.1	219.1	219.1	219.1	219.1	219.1	219.1	273	273
Option 100C												
Nominal diameter	in	6	6	8	8	8	8	8	8	8	10	10
Actual outside diameter	mm	168.3	168.3	219.1	219.1	219.1	219.1	219.1	219.1	219.1	273	273
Condenser												
Units without option 10)2C											
Nominal diameter	in	6	6	8	8	8	8	8	10	10	10	10
Actual outside diameter	mm	168.3	168.3	219.1	219.1	219.1	219.1	219.1	273	273	273	273
Option 102C												
Nominal diameter	in	8	8	8	8	8	8	8	10	10	10	10
Actual outside diameter	mm	219.1	219.1	219.1	219.1	219.1	219.1	219.1	273	273	273	273

7.3 - Flow control

Evaporator flow switch and chilled water pump interlock

IMPORTANT: On 30XW units, the unit water flow switch must be energised, and the chilled water pump interlock must be connected. Failure to follow this instruction will void the Carrier guarantee.


The water flow switch is installed on the evaporator water inlet and adjusted by the control, based on unit size and application. If adjustment is necessary, it must be carried out by qualified personnel trained by Carrier Service.

Terminals 34 and 35 are provided for field installation of the chilled water pump interlock (auxiliary contact for pump operation to be wired on site).

7.4 - Evaporator and condenser water box bolt tightening

The evaporator (and condenser) are of the shell and tube type with removable water boxes to facilitate cleaning. Retightening or tightening must be done in accordance with the illustration in the example below.

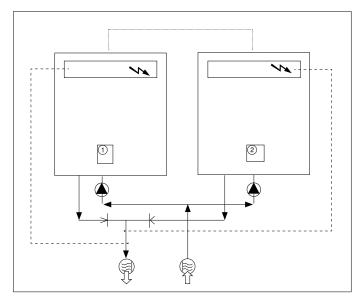
Water box tightening sequence

Legend

- 1 Sequence 1: 1 2 3 4 Sequence 2: 5 6 7 8 Sequence 3: 9 10 11 12 Sequence 4: 13 14 15 16
- 2 Tightening torque Bolt size M16 - 171 - 210 Nm

NOTE: Before this operation we recommend draining the circuit and disconnecting the pipes to be sure that the bolts are correctly and uniformly tightened.

7.5 - Operation of two units in master/slave mode


The control of a master/slave assembly is in the entering water and does not require any additional sensors (standard configuration). It can also be located in the leaving water. In this case two additional sensors must be added on the common piping.

All parameters, required for the master/slave function must be configured using the MST_SLV menu.

All remote controls of the master/slave assembly (start/stop, set point, load shedding etc.) are controlled by the unit con-figured as master and must only be applied to the master unit.

Each unit controls its own water pump. If there is only one common pump, in cases with variable flow, isolation valves must be installed on each unit. They will be activated at the opening and closing by the control of each unit (in this case the valves are controlled using the dedicated water pump outputs). See the 30XA/30XW Pro-Dialog Control IOM for a more detailed explanation.

30XW with configuration: leaving water control

Legend

1 Master unit

② Slave unit

4 Control boxes of the master and slave units

⟨⟩⟩⟩

★ Water inlet

Water outlet

Water pumps for each unit (included as standard for units with hydronic)

- Additional sensors for leaving water control, to be connected to channel 1 of the slave boards of each master and slave unit
- • CCN communication bus
- ---- Connection of two additional sensors

8 - HEAT MACHINE UNITS 30XWH- AND 30XWHP

8.1 - Physical data for Heat Machine units

The physical data for the Heat Machine units 30XWH-/30XWHP are the same as for the 30XW--/30XW-P units. Please refer to chapter 4.1.

8.2 - Electrical data for Heat Machine units

The electrical data for the Heat Machine units 30XWH-/30XWHP are the same as for the 30XW--/30XW-P units. Please refer to chapter 4.2.

8.3 - Dimensions and clearances for Heat Machine units

The dimensions and clearances are the same as for the 30XW--/30XW-P units. Please refer to chapter 3.

8.4 - Operating range for Heat Machine units

The operating limits are the same as for the 30XW--/30XW-P units. Please refer to chapter 6.1.

8.5 - Operating modes for Heat Machine units

8.5.1 - Cooling mode

This operating mode is the same as that for 30XW units. The unit controls on the cooling setpoint.

8.5.2 - Heating mode

Unlike in the cooling mode, the unit uses the heating setpoint in this configuration. The evaporator leaving water control (lowest setpoint taken into consideration) is still maintained to prevent operation at very low temperatures.

9 - OPTION FOR HIGH CONDENSING TEMPERATURES (OPTION 150)

9.1 - Physical data, units with option 150

30XW/30XWH		252	302	352	402	452	552	602	652	702	802	852	1002	1052	1152	1252	1352	1452	1552	1652	1702
Operating weight	kg	2054	2059	2083	2575	2575	2613	2644	3407	3438	3462	3672	5370	5408	5705	7233	7554	7622	7670	9006	9032
Compressors		Semi-	herme	etic 06	Γ screv	v com	ressoi	rs, 50 r	/s												
Circuit A		1	1	1	1	1 '	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Circuit B		-			-	-					-		1	1	1	1	1	1	1	1	1
Refrigerant charge*		R-134	la	-		-							-	-	-						
Circuit A	kg	84	80	78	82	82	82	82	145	140	135	140	85	85	105	120	115	110	105	195	195
Circuit B	kg	-	-	-	-	-	-	-	-	-	-	-	85	85	105	120	115	110	105	195	195
Oil charge	''9	SW22	n												100		110	-110	100	-100	100
Circuit A		23,5		23.5	32	32	32	32	36	36	36	36	32	32	32	36	36	36	36	36	36
Circuit B		20,0	20,5	20,0	- 52	52	- 52	52	-	-	-	-	32	32	32	32	36	36	36	36	36
Capacity control	<u>'</u>	- Dro-D	ialaa	- olootro	nio ov	- nancio	n valvo	es (EX\				-	32	32	32	32	30	30	30	30	30
• •	0/		•					•	•	15	15	15	10	10	10	10	10	10	10	10	10
Minimum capacity	%	30	30	30	30	30	30	30	15	15	15	15	10	10	10	10	10	10	10	10	10
Evaporator				ooded																	
Net water volume	ı	64	64	64	72	72	72	72	109	109	109	98	185	185	214	307	307	307	307	363	363
Water connections		Victau		_	_	_	_	_	•	•	•	•	_	_		•		•	•	•	
Inlet/outlet**	in	5	5	5	5	5	5	5	6	6	6	6	6	6	8	8	8	8	8	8	8
Drain and vent connections (NPT)	in	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8
Max. water-side operating pressure	kPa				1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Condenser		Multi- _I	pipe ty	/pe																	
Net water volume	I	55	55	55	80	80	80	80	80	80	80	141	238	238	238	347	347	347	347	426	426
Water connections		Victau	ılic																		
Inlet/outlet**	in	5	5	5	5	5	5	5	6	6	6	8	8	8	8	8	8	8	8	8	8
Drain and vent connections (NPT)	in	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8
Max. water-side operating pressure	kPa	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
High-efficiency units (option 150	١																				
30XW-P/30XWHP	,			512		562	71	12	812		862	10	12	1162	1	312	146	2	1612	17	'62
Operating weight		k	g	298		3020		72	4117		4145	687		6950		278	961		11225		279
Compressors			9					ew con						0000			301	т	11223		210
Circuit A				1	111-11611	1	1	ew con	1	013, 50		1		1	1		1		1	1	
Circuit B				'		'	'		'			1		1	1		1			1	
				- D 1	240	-			-	-				<u>'</u>					1	<u>.</u>	
Refrigerant charge*				R-1		100	- 10	20	175		170		`			05					
Refrigerant charge* Circuit A			g	R-1 130		130	18	30	175		170	120		120	2	05	205		240	25	
Refrigerant charge* Circuit A Circuit B			(g (g	130		130	- 18 -	30	- 175 -						2	05 05					
Refrigerant charge* Circuit A Circuit B Oil charge		k	-	130 - SW		-	-		-		-	120 120		120 120	2	05	205 205		240 240	25 25	50
Refrigerant charge* Circuit A Circuit B Oil charge Circuit A		k I	-	130		130 - 32						120 120 32		120 120 32	2 2	05 6	205 205 36		240 240 36	25 25 36	50 5
Refrigerant charge* Circuit A Circuit B Oil charge Circuit A Circuit B		k	-	130 - SW 32 -	220	32	36	6	36	-	36	120 120		120 120	2	05 6	205 205		240 240	25 25	50 5
Refrigerant charge* Circuit A Circuit B Oil charge Circuit A Circuit B Capacity control		l I	g 	130 - SW 32 - Pro-	220	32 - g, elect	36 - ronic e	expans	- 36 - ion val	ves (E	36 - XV)	120 120 32 32		120 120 32 32	2 2 3 3	05 6 2	205 205 36 36		240 240 36 36	25 25 36 36	60 6
Refrigerant charge* Circuit A Circuit B Oil charge Circuit A Circuit B Capacity control Minimum capacity		l I	-	130 - SW 32 - Pro- 30	220 -Dialog	32 - g, elect	36 - ronic e	s expans	36	ves (E	36	120 120 32		120 120 32	2 2	05 6 2	205 205 36		240 240 36	25 25 36	60 6
Refrigerant charge* Circuit A Circuit B Oil charge Circuit A Circuit B Capacity control Minimum capacity Evaporator		k I I	g 	130 - SW 32 - Pro- 30 Mul	220 -Dialoç ti-pipe	32 - g, elect 30 floode	36 - ronic e 15	s expans	- 36 - ion val 15	; ves (E	36 - XV) 15	120 120 32 32 20)	120 120 32 32 32	2 2 3 3	05 6 2	205 205 36 36		240 240 36 36	25 25 36 36	60 6 6
Refrigerant charge* Circuit A Circuit B Oil charge Circuit A Circuit B Capacity Control Minimum capacity Evaporator Net water volume		l I	g 	130 - SW 32 - Pro- 30 Mul 106	220 -Dialoo ti-pipe	32 - g, elect	36 - ronic e	s expans	- 36 - ion val	; ves (E	36 - XV)	120 120 32 32)	120 120 32 32	2 2 3 3	05 6 2	205 205 36 36		240 240 36 36	25 25 36 36	60 6 6
Refrigerant charge* Circuit A Circuit B Oil charge Circuit A Circuit B Capacity control Minimum capacity Evaporator		k I I	g 	130 - SW 32 - Pro 30 Mul 106 Vict	220 -Dialoç ti-pipe	32 - g, elect 30 floode	36 - ronic e 15 d type	s expans	36 - ion val 15	ves (E	36 - XV) 15	120 120 32 32 20)	120 120 32 32 20 307	2 2 3 3 1	05 6 2 0	205 205 36 36 10		240 240 36 36 10 473	25 25 36 36 10	60
Refrigerant charge* Circuit A Circuit B Oil charge Circuit A Circuit B Capacity Control Minimum capacity Evaporator Net water volume		k I I	/6	130 - SW 32 - Pro- 30 Mul 106 Vict 6	220 -Dialoo ti-pipe	32 - g, elect 30 floode 106	36 - ronic e 15 d type 15	expans	36 - ion val 15 154		36 - XV) 15	120 120 32 32 20 307 8	7	120 120 32 32 20 307	2 2 3 3 3 1 1 3 3 8	05 6 2 0	205 205 36 36 10 363 8		240 240 36 36 10 473	25 25 36 36 10 47	73
Refrigerant charge* Circuit A Circuit B Oil charge Circuit A Circuit B Capacity Control Minimum capacity Evaporator Net water volume Water connections		k	%	130 - SW 32 - Pro 30 Mul 106 Vict	220 -Dialoo ti-pipe	32 - g, elect 30 floode	36 - ronic e 15 d type	expans	36 - ion val 15		36 - XV) 15	120 120 32 32 20	7	120 120 32 32 20 307	2 2 3 3 1	05 6 2 0	205 205 36 36 10		240 240 36 36 10 473	25 25 36 36 10	73
Refrigerant charge* Circuit A Circuit B Oil charge Circuit A Circuit B Capacity Control Minimum capacity Evaporator Net water volume Water connections Inlet/outlet**			%	130 - SW 32 - Pro- 30 Mul 106 Vict 6	220 -Dialoç ti-pipe aulic	32 - g, elect 30 floode 106	36 - ronic e 15 d type 15 8 3/3	expans	36 - ion val 15 154	ves (E	36 - XV) 15	120 120 32 32 20 307 8	7	120 120 32 32 20 307	2 2 3 3 3 1 1 3 3 8 3 3	05 6 2 0	205 205 36 36 10 363 8		240 240 36 36 10 473	25 25 36 36 10 47 10 3/8	73
Refrigerant charge* Circuit A Circuit B Oil charge Circuit A Circuit B Capacity Control Minimum capacity Evaporator Net water volume Water connections Inlet/outlet** Drain and vent connections (NPT)			% 	130 - SW 32 - Pro- 30 Mul 106 Vict 6 3/8 100	220 -Dialoç ti-pipe aulic	32 - g, elect 30 floode 106 6 3/8 1000	36 - ronic e 15 d type 15 8 3/3	expans 5 54	36 - ion val 15 154 8 3/8	ves (E	36 - XV) 15 154 8 3/8	120 120 32 32 20 307 8 3/8	7	120 120 32 32 20 307 8 3/8	2 2 3 3 3 1 1 3 3 8 3 3	05 6 2 0 63	205 205 36 36 10 363 8 3/8		240 240 36 36 36 10 473 10 3/8	25 25 36 36 10 47 10 3/8	3 3 3 9 8
Refrigerant charge* Circuit A Circuit B Oil charge Circuit A Circuit B Capacity control Minimum capacity Evaporator Net water volume Water connections Inlet/outlet** Drain and vent connections (NPT) Max. water-side operating pressure			% 	130 - SW 32 - Pro- 30 Mul 106 Vict 6 3/8 100	220 -Dialog ti-pipe aulic 0 ti-pipe	32 - g, elect 30 floode 106 6 3/8 1000	36 - ronic e 15 d type 15 8 3/3	8 8 9000	36 - ion val 15 154 8 3/8	ves (E	36 - XV) 15 154 8 3/8	120 120 32 32 20 307 8 3/8	7	120 120 32 32 20 307 8 3/8	2 ¹ 3 ³ 3. 1 ¹ 8 3. 1 ¹	05 6 2 0 63	205 205 36 36 10 363 8 3/8	0	240 240 36 36 36 10 473 10 3/8	25 25 36 36 10 47 10 3/8	3 3 3 9 8 9 9 8
Refrigerant charge* Circuit A Circuit B Oil charge Circuit A Circuit B Capacity control Minimum capacity Evaporator Net water volume Water connections Inlet/outlet** Drain and vent connections (NPT) Max. water-side operating pressure Condenser			% 	130 - SW 32 - Pro- 30 Mul 106 Vict 6 3/8 100 Mul 112	220 -Dialog ti-pipe aulic 0 ti-pipe	32 - g, elect 30 floode 106 6 3/8 1000 type	36 	8 8 9000	36 - ion val 15 154 8 3/8 1000	ves (E	36 	120 120 32 32 20 307 8 3/8 100	7	120 120 32 32 20 307 8 3/8 1000	2 ¹ 3 ³ 3. 1 ¹ 8 3. 1 ¹	05 6 2 0 63 /8 000	205 205 36 36 10 363 8 3/8 1000	0	240 240 36 36 10 473 10 3/8 1000	25 25 36 36 10 47 10 3/8 10	3 3 3 9 8 9 9 8
Refrigerant charge* Circuit A Circuit B Oil charge Circuit A Circuit B Capacity control Minimum capacity Evaporator Net water volume Water connections Inlet/outlet** Drain and vent connections (NPT) Max. water-side operating pressure Condenser Net water volume			n n :Pa	130 - SW 32 - Pro- 30 Mul 106 Vict 6 3/8 100 Mul 112	220 -Dialog ti-pipe aulic 0 ti-pipe	32 - g, elect 30 floode 106 6 3/8 1000 type	36 	8 8 9000	36 - ion val 15 154 8 3/8 1000	ves (E	36 	120 120 32 32 20 307 8 3/8 100	7	120 120 32 32 20 307 8 3/8 1000	2 ¹ 3 ³ 3. 1 ¹ 8 3. 1 ¹	05 6 2 0 63 /8 000 97	205 205 36 36 10 363 8 3/8 1000	0	240 240 36 36 10 473 10 3/8 1000	25 25 36 36 10 47 10 3/8 10	73 8 9000
Refrigerant charge* Circuit A Circuit B Oil charge Circuit A Circuit B Capacity Control Minimum capacity Evaporator Net water volume Water connections Inlet/outlet** Drain and vent connections (NPT) Max. water-side operating pressure Condenser Net water volume Water connections			n n :Pa	130 - SW 32 - Pro 30 Mul 106 Vict 6 3/8 100 Mul 112 Vict	220 -Dialog ti-pipe aulic 0 ti-pipe	32 - g, elect 30 floode 106 6 3/8 1000 type 112	36 	8 8 9000	36 - ion val 15 154 8 3/8 1000		36 	120 120 32 32 20 307 8 3/8 100	7	120 120 32 32 20 307 8 3/8 1000	2 2 3 3 1 3 8 3 1 4	05 6 2 0 63 /8 000 97	205 205 36 36 10 363 8 3/8 1000 497	0	240 240 36 36 10 473 10 3/8 1000	25 25 36 36 10 47 10 3/8 10	3 3 3 0 8 9 9 9 9 9 9 9

Weights are guidelines only. The refrigerant charge is given on the unit nameplate.

For options 100C (evaporator - 1 pass) and 102C (condenser - 1 pass) please refer to the chapter "Water connections".

9.2 - Electrical data, units with option 150

Standard-efficiency units (option	150)																				
30XW/30XWH	,	252	302	352	402	452	552	602	652	702	802	852	1002	1052	1152	1252	1352	1452	1552	1652	1702
Power circuit																					
Nominal power supply	V-ph-Hz	400	-3-50																		
Voltage range	٧.	360	-440																		
Control circuit		24 V	/ via th	ne buil	t-in tra	nsforr	ner														
Nominal start-up current*																					
Circuit A	Α	303	388	388	587	587	587	587	772	772	772	772	587	587	587	772	772	772	772	772	772
Circuit B	Α	-	-	-	-	-	-	-	-	-	-	-			587	772	772	772	772	772	772
Option 81	A	_	_	_	_	_	_	_	_	_	_	_			757	965	965	986			1004
Maximum start-up current**														701		000	000		1001	1001	1001
Circuit A	Α	303	388	388	587	587	587	587	772	772	772	772	587	587	587	772	772	772	772	772	772
Circuit B	A	505	500	500	567	507	507	507	112	112	112	112	587		587	772	772	772	772	772	772
Option 81	A	-	-	-		-	-	-	-	-	-	-			887		1172		1232	1004	1232
Cosine phi nominal***	Α	0.70	0.78	0.79	0.00	0.85	0.05	0.05	0.04	0.06	0.87	0.07			0.85	0.86	0.85	0.86	0.87	0.86	0.87
•					0.90										0.65	0.86	0.65	0.80	0.67	0.80	0.87
Cosine phi maximum****		0.00	0.67	0.00	0.90	0.90	0.91	0.91	0.90	0.90	0.90	0.90	0.90	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Maximum power input†		o -		400	450	470	404	404	0.40	000	000	000	404	404	404	050	050	074	000	000	000
Circuit A	kW	97	111	122	156	1/3	191	191	249	268		286	191		191	252	252	271	290	290	290
Circuit B	kW	-	-	-	-	-	-	-	-	-	-	-			191	191	252	271	290	271	290
Option 81	kW	-	-	-	•	-	-	-	-	-	-	-	364	382	382	443	504	542	580	562	580
Nominal current drawn***																					
Circuit A	Α	95	109	125	150	162	171	171	193	214	232	232			171	210	210	230	250	250	250
Circuit B	Α	-	-	-	-	-	-	-	-	-	-	-			171	171	210	230	250	230	250
Option 81	Α	-	-	-	-	-	-	-	-	-	-	-	333	342	342	381	420	460	500	480	500
Maximum current drawn (Un)†																					
Circuit A	Α	160	185	200	250	275	300	300	400	430	460	460	300	300	300	400	400	430	460	460	460
Circuit B	Α	-	-	-	-	-	-	-	-	-	-	-	275	300	300	300	400	430	460	430	460
Option 81	Α	-	-	-	-	-	-	-	-	-	-	-	575	600	600	700	800	860	920	890	920
Max. current drawn (Un -10%)****																					
Circuit A	Α	176	206	224	270	300	330	330	419	455	476	476	330	330	330	419	419	455	476	476	476
Circuit B	Α	-	-	-	-	-	-	-	-	-	-	-	300	330	330	330	419	455	476	455	476
Option 81	Α	-	-	-	-	-	-	-	-	-	-	-	630	660	660	749	838	910	952	931	952
High-efficiency units (option 150)	`																				
30XW-P/30XWHP			51	2	562)	712		812	Ω.	62	10	12	1162	1	312	146	2	1612	17	62
Power circuit					302		/ 12		012		02	- 10	12	1102		312	140		1012	- ''	02
		/ mh	- 40	000	^																
Nominal power supply	V	'-ph-H '		0-3-5																	
Voltage range	V																				
				0-440		.04 0.2 4															
Control circuit					the bu	uilt-in t	ransfo	rmer													
Nominal start-up current*			24	V via	the bu																_
Nominal start-up current* Circuit A	A			V via	the bu		772		772		72	58		587		72	772		772	77	
Nominal start-up current* Circuit A Circuit B	Α		58 -	V via	the bu 587 -		772 -		-	-	72	58	7	587	7	72	772		772	77	2
Nominal start-up current* Circuit A Circuit B Option 81			24	V via	the bu		772				72		7		7						2
Nominal start-up current* Circuit A Circuit B Option 81 Maximum start-up current**	A	\ \	58 - -	V via	587 - -		772 - -		-	-		58 74	7 9	587 757	7 9	72 65	772 965		772 986	77: 10	2 04
Nominal start-up current* Circuit A Circuit B Option 81	Α	\ \	58 -	V via	the bu 587 -		772 -		-	-	72 72	58 74 58	7 9 7	587 757 587	7 9 7	72 65 72	772 965 772		772 986 772	77: 10: 77:	2 04 2
Nominal start-up current* Circuit A Circuit B Option 81 Maximum start-up current**	A	\ \ \	58 - -	V via	587 - -		772 - -		-	-		58 74 58 58	7 9 7 7	587 757 587 587	7 9 7 7	72 65 72 72	772 965		772 986	77: 10: 77: 77:	2 04 2 2
Nominal start-up current* Circuit A Circuit B Option 81 Maximum start-up current** Circuit A Circuit B Option 81	A A	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	58 - - 58	V via	587 - - 587 - -		772 - - 772		772	- - 7		58 74 58	7 9 7 7	587 757 587	7 9 7 7	72 65 72	772 965 772		772 986 772	77: 10: 77:	2 04 2 2
Nominal start-up current* Circuit A Circuit B Option 81 Maximum start-up current** Circuit A Circuit B Option 81 Cosine phi nominal***	A A A	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	58 - - - 58 -	V via	587 - - 587		772 - - 772		772	- - 7 -		58 74 58 58	7 9 7 7 2	587 757 587 587	7 9 7 7 1	72 65 72 72	772 965 772 772	2	772 986 772 772	77: 10: 77: 77:	2 04 2 2 32
Nominal start-up current* Circuit A Circuit B Option 81 Maximum start-up current** Circuit A Circuit B Option 81	A A A	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	58 - - - 58 -	V via	587 - - 587 - -	3	772 - - 772 -		- 772 -	- - 7 - - 0	72	58 74 58 58 86	7 9 7 7 2 37	587 757 587 587 887	7 9 7 7 1 0	72 65 72 72 172	772 965 772 772 117	2	772 986 772 772 1202	77: 10: 77: 77: 12:	2 04 2 2 32 37
Nominal start-up current* Circuit A Circuit B Option 81 Maximum start-up current** Circuit A Circuit B Option 81 Cosine phi nominal***	A A A	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	58 - - - 58 - - -	V via	587 - - 587 - - 0.88	3	772 - - 772 - - 0.84		772	- - 7 - - 0	72	58 74 58 58 86 0.8	7 9 7 7 2 37	587 757 587 587 887 0.88	7 9 7 7 1 0	72 65 72 72 172 .86	772 965 772 772 1173 0.85	2	772 986 772 772 1202 0.86	77: 10: 77: 77: 12: 0.8	2 04 2 2 32 37
Nominal start-up current* Circuit A Circuit B Option 81 Maximum start-up current** Circuit A Circuit B Option 81 Cosine phi nominal*** Cosine phi maximum****	A A A	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	58 - - - 58 - - -	V via 37 37 88 91	587 - - 587 - - 0.88	3	772 - - 772 - - 0.84		772	7 - - 0 0	72	58 74 58 58 86 0.8	7 9 7 7 2 2 37	587 757 587 587 887 0.88	7 9 7 7 1 0 0	72 65 72 72 172 .86	772 965 772 772 1173 0.85	2	772 986 772 772 1202 0.86	77: 10: 77: 77: 12: 0.8	2 04 2 2 2 32 37 91
Nominal start-up current* Circuit A Circuit B Option 81 Maximum start-up current** Circuit A Circuit B Option 81 Cosine phi nominal*** Cosine phi maximum****	A A A A	A A A A A A A A A A A A A A A A A A A	58 - - 58 - - 0.0	V via 37 37 88 91	587 - - 587 - - 0.88 0.92	3	772 - - 772 - - 0.84 0.90		772 - - - 0.86 0.90	7 - - 0 0	.87 .90	58 74 58 58 86 0.8	7 9 7 7 2 2 37 91	587 757 587 587 887 0.88 0.92	7 9 7 7 1 0 0	72 65 72 72 172 .86	772 965 772 772 1177 0.85 0.91	2 5	772 986 772 772 1202 0.86 0.91	777 100 777 777 122 0.8	2 04 2 2 2 332 37 91
Nominal start-up current* Circuit A Circuit B Option 81 Maximum start-up current** Circuit A Circuit B Option 81 Cosine phi nominal*** Cosine phi maximum**** Maximum power input† Circuit A	A A A A K k	W	58 - - 58 - - 0.0	V via 37 37 88 91	587 - - 587 - - 0.88 0.92	3	772 - - 772 - - 0.84 0.90		772 - - - 0.86 0.90	7 - 0 0 0	.87 .90	58 74 58 58 86 0.8 0.9	7 9 7 7 2 2 37 91 3 3	587 757 587 587 887 0.88 0.92	7 9 7 7 1 0 0	72 65 72 72 172 .86 .91	772 965 772 772 1177 0.85 0.91	2	772 986 772 772 1202 0.86 0.91	777 100 777 777 122 0.8 0.9	2 004 2 2 2 332 37 01
Nominal start-up current* Circuit A Circuit B Option 81 Maximum start-up current** Circuit A Circuit B Option 81 Cosine phi nominal*** Cosine phi maximum**** Maximum power input† Circuit A Circuit B	A A A A K k	w	58 - - 58 - - 0.0	V via 37 37 88 91	587 - - 587 - - 0.88 0.92	3	772 - - 772 - - 0.84 0.90		772 - - - 0.86 0.90	7 - 0 0	.87 .90	58 74 58 58 86 0.8 0.9	7 9 7 7 2 2 37 91 3 3	587 757 587 587 887 0.88 0.92	7 9 7 7 1 0 0	72 65 72 72 172 .86 .91	772 965 772 772 1173 0.85 0.91 252 252	2	772 986 772 772 1202 0.86 0.91 271	777 100 777 777 120 0.8 0.9	2 004 2 2 2 332 37 01
Nominal start-up current* Circuit A Circuit B Option 81 Maximum start-up current** Circuit A Circuit B Option 81 Cosine phi nominal*** Cosine phi maximum**** Maximum power input† Circuit A Circuit B Option 81 Nominal current drawn***	A A A A A	w	58 - - 58 - - 0.1	V via 37 37 88 91	587 - - 587 - - - 0.88 0.92 191 -	3	772 - - 772 - - 0.84 0.90 194 -		772 - 0.86 0.90	- - 7 - 0 0	.87 .90 23	58 74 58 58 86 0.8 0.9 17 17 34	7 99 7 7 7 2 37 91 3 3 6	587 757 587 587 887 0.88 0.92 191 191 382	7 9 7 7 1 0 0	72 65 72 72 172 .86 .91 52 91 43	772 965 772 772 1177 0.85 0.91 252 252 504	2	772 986 772 772 1202 0.86 0.91 271 271 542	777 100 777 777 12 0.8 0.9 29 29 58	2 04 2 2 32 37 91 0 0
Nominal start-up current* Circuit A Circuit B Option 81 Maximum start-up current** Circuit A Circuit B Option 81 Cosine phi nominal*** Cosine phi maximum**** Maximum power input† Circuit A Circuit B Option 81 Nominal current drawn*** Circuit A	A A A A A A A A K K K K K A A	w	58 - - 58 - - 0.0	V via 37 37 88 91	587 - - 587 - - 0.88 0.92	3	772 - - 772 - - 0.84 0.90		772 - - - 0.86 0.90	- - 7 - 0 0	.87 .90	58 74 58 58 86 0.8 0.9 17 17 34	7 99 7 7 7 2 37 91 3 3 6	587 757 587 587 887 0.88 0.92 191 191 382	7 9 7 7 1 0 0	72 65 72 72 172 .86 .91 52 91 43	772 965 772 772 1173 0.85 0.91 252 252 504	2	772 986 772 772 1202 0.86 0.91 271 271 542	777 100 777 773 12 0.8 0.9 29 29 58	2 04 2 2 32 37 91 0 0
Nominal start-up current* Circuit A Circuit B Option 81 Maximum start-up current** Circuit A Circuit B Option 81 Cosine phi nominal*** Cosine phi maximum**** Maximum power input† Circuit A Circuit B Option 81 Nominal current drawn*** Circuit A Circuit B	A A A A A A A A A A A A A A A A A A A	w	58 - - 58 - - 0.1	V via 37 37 88 91	587 587 0.88 0.92 191 171 -	3	772 - - 772 - - 0.84 0.90 194 -		772 - 0.86 0.90	- - 7 - 0 0	.87 .90 23	58 58 58 86 0.8 0.9 17 17 34 16 16	7 9 7 7 7 2 2 37 91 3 3 6	587 757 587 587 887 0.88 0.92 191 191 382	7 9 7 7 1 0 0 2 1 4	72 65 72 72 172 .86 .91 52 91 43	772 965 772 772 1173 0.85 0.91 252 252 504 210 210	2	772 986 772 772 1202 0.86 0.91 271 271 542 230 230	77: 10 77: 77: 12 0.8 0.9 29 29 58: 25: 25:	2 04 2 2 2 332 37 01 0 0 0
Nominal start-up current* Circuit A Circuit B Option 81 Maximum start-up current** Circuit A Circuit B Option 81 Cosine phi nominal*** Cosine phi maximum**** Maximum power input† Circuit A Circuit B Option 81 Nominal current drawn*** Circuit A Circuit B Option 81 Nominal current drawn***	A A A A A A A A K K K K K A A	w	58 58 0.0 - 17 166	V via 37 37 88 91	587 - - 587 - - - 0.88 0.92 191 - -	3	772 - - 772 - 0.84 0.90 194 - - -		772 - - 0.86 0.90 - - -	- - 7 - 0 0	.87 .90 23	58 74 58 58 86 0.8 0.9 17 17 34	7 9 7 7 7 2 2 37 91 3 3 6	587 757 587 587 887 0.88 0.92 191 191 382	7 9 7 7 1 0 0 2 1 4	72 65 72 72 172 .86 .91 52 91 43	772 965 772 772 1173 0.85 0.91 252 252 504	2	772 986 772 772 1202 0.86 0.91 271 271 542	777 100 777 773 12 0.8 0.9 29 29 58	2 04 2 2 2 332 37 01 0 0 0
Nominal start-up current* Circuit A Circuit B Option 81 Maximum start-up current** Circuit A Circuit B Option 81 Cosine phi nominal*** Cosine phi maximum**** Maximum power input† Circuit A Circuit B Option 81 Nominal current drawn*** Circuit A Circuit B Option 81 Nominal current drawn*** Circuit B Option 81 Maximum current drawn (Un)†	A A A A A A A A A A A A A A A A A A A	w w w	24 588 - - - 586 - - - 0.0	888 91 33	587 587 0.88 0.92 191 171 	33	772 - - 772 - 0.84 0.90 194 - -			77	.87 .90 .23	58 74 58 58 60.8 0.8 17 17 34 16 16 32	7 9 7 7 2 37 91 3 3 6 2 2 4	587 757 587 587 887 0.88 0.92 191 191 382 171 171 342	7 9 7 7 1 0 0 2 1 4	72 65 72 72 172 .86 .91 52 91 43	772 965 772 1173 0.85 0.91 252 252 504 210 420	2	772 986 772 772 1202 0.86 0.91 271 271 542 230 230 460	77: 10: 77: 12: 0.8: 0.9: 29: 29: 58: 25: 25:	2 04 2 2 2 332 37 01 0 0 0 0
Nominal start-up current* Circuit A Circuit B Option 81 Maximum start-up current** Circuit A Circuit B Option 81 Cosine phi nominal*** Cosine phi maximum**** Maximum power input† Circuit A Circuit B Option 81 Nominal current drawn*** Circuit A Circuit B Option 81 Maximum current drawn (Un)† Circuit A	A A A A A A A A A A A A A	w w w w	58 58 0.0 - 17 166	888 91 33	587 	33	772		772 - - 0.86 0.90 - - -	77	.87 .90 23	588 744 588 866 0.8 866 0.8 177 177 344 166 32 27	7 9 7 7 2 33 91 3 3 6 2 2 4	587 757 587 587 887 0.88 0.92 191 191 382 171 171 342 300	77 99 77 77 11 00 00 22 11 44 21 13	72 65 72 72 172 .86 .91 52 91 43 10 71 81	772 965 772 1173 0.85 0.91 252 252 504 210 210 420	2	772 986 772 772 1202 0.86 0.91 271 271 542 230 230 460	777 100 777 773 120 0.8 0.9 29 29 58 25 25 50	2 04 2 2 2 32 37 01 0 0 0 0
Nominal start-up current* Circuit A Circuit B Option 81 Maximum start-up current** Circuit A Circuit B Option 81 Cosine phi nominal*** Cosine phi maximum**** Maximum power input† Circuit A Circuit B Option 81 Nominal current drawn*** Circuit A Circuit B Option 81 Maximum current drawn (Un)† Circuit A Circuit B	A A A A A A A A A	w w w w	24 588 - - - 586 - - - 0.0	888 91 33	587	33	772 0.84 0.90 194 400		7772 - - - - - - - - - - - - - - - - - -	77	.87 .90 .23	5886 74 5886 0.8 60.9 177 177 34 166 32 27 27	7 9 7 7 2 2 37 91 3 3 6 2 2 4	587 757 587 587 887 0.88 0.92 191 191 382 171 171 342 300 300	77 99 77 77 11 00 00 22 11 44 21 11 33	772 665 772 772 1172 886 .991 43 110 771 881	772 965 772 772 117: 0.855 0.91 252 252 504 210 210 420 400 400	2	772 986 772 772 1202 0.86 0.91 271 271 542 230 230 460 430	777. 100 777. 121 0.8. 0.9. 299 588 255 500 466 46	2 04 2 2 2 33 37 91 0 0 0 0 0
Nominal start-up current* Circuit A Circuit B Option 81 Maximum start-up current** Circuit A Circuit B Option 81 Cosine phi nominal*** Cosine phi maximum**** Maximum power input† Circuit A Circuit B Option 81 Nominal current drawn*** Circuit A Circuit A Circuit A Circuit B Option 81 Maximum current drawn (Un)† Circuit A Circuit B Option 81	A A A A A A A A A A A	w w w w	24 588 - - - 586 - - - 0.0	888 91 33	587 	33	772			77	.87 .90 .23	588 744 588 866 0.8 866 0.8 177 177 344 166 32 27	7 9 7 7 2 2 37 91 3 3 6 2 2 4	587 757 587 587 887 0.88 0.92 191 191 382 171 171 342 300	77 99 77 77 11 00 00 22 11 44 21 11 33	72 65 72 72 172 .86 .91 52 91 43 10 71 81	772 965 772 1173 0.85 0.91 252 252 504 210 210 420	2	772 986 772 772 1202 0.86 0.91 271 271 542 230 230 460	777 100 777 773 120 0.8 0.9 29 29 58 25 25 50	2 04 2 2 2 33 37 91 0 0 0 0 0
Nominal start-up current* Circuit A Circuit B Option 81 Maximum start-up current** Circuit A Circuit B Option 81 Cosine phi nominal*** Cosine phi maximum**** Maximum power input† Circuit A Circuit B Option 81 Nominal current drawn*** Circuit B Coption 81 Maximum current drawn (Un)† Circuit A Circuit B Option 81 Maximum current drawn (Un)† Circuit A Circuit B Option 81	A A A A A A A A A A A A A A A A A A A	w w w w	244 588 - - - - 0.0.0.1 177 - - - - - - - - - - - - - - - - - - -	87 V via 87 888 91 33 32 22 25 5	587	33 22	772 - - 772 - 0.84 0.90 194 - - - 400		209		72 .87 .90 23 32	588 744 588 866 0.8 86 0.9 97 177 344 166 32 27 27 55	7 9 9 7 7 7 7 2 2 3 3 3 3 6 6 2 2 2 2 4 4 5 5 5 5 0 0	587 757 587 587 0.88 0.92 191 191 382 171 171 342 300 300 600	77 99 77 77 11 00 00 22 11 44 21 13 33	772 655 772 772 772 1172 866 991 43 110 771 881	772 965 772 772 117: 0.85 0.91 252 252 504 210 420 400 400 800	2 5 1	772 986 772 772 1202 0.86 0.91 271 271 542 230 2460 430 430 430 860	777. 100 777. 121 0.86 0.99 299 588 255 500 466 929	2 04 2 2 2 32 37 91 0 0 0 0 0 0
Nominal start-up current* Circuit A Circuit B Option 81 Maximum start-up current** Circuit A Circuit B Option 81 Cosine phi nominal*** Cosine phi maximum**** Maximum power input† Circuit A Circuit B Option 81 Nominal current drawn*** Circuit A Circuit B Option 81 Maximum current drawn (Un)† Circuit A Circuit B Option 81 Maximum current drawn (Un)† Circuit A Circuit B Option 81 Maximum current drawn (Un)† Circuit A Circuit B Option 81	A A A A A A A A A A A A A A A A A A A	wwww	244 588	87 V via 87 888 91 33 32 22 25 5	587	33 22	772 - - 772 - 0.84 0.90 194 - - - 400 - 419		772 - - - - - - - - - - - - - - - - - -		.87 .90 .23	588 744 588 866 0.8 866 0.9 177 177 344 166 322 277 555 300	7 9 9 7 7 7 7 2 2 3 3 3 3 6 6 2 2 2 2 4 4 9 5 5 5 0 0 0 0	587 757 587 587 0.88 0.92 191 191 382 171 171 342 300 300 600	77 99 77 77 11 00 00 22 11 44 22 13 33 77	772 665 772 772 772 1172 886 991 43 110 771 881 000 000	772 965 772 772 117: 0.85 0.91 252 252 504 210 420 400 400 800	2 5 1	772 986 772 772 1202 0.86 0.91 271 271 542 230 230 460 430 430 430 860	777. 100 777. 121 0.8. 0.9. 299 299 588 255 500 466 92	2 04 2 2 2 33 37 01 0 0 0 0 0 0 0
Nominal start-up current* Circuit A Circuit B Option 81 Maximum start-up current** Circuit A Circuit B Option 81 Cosine phi nominal*** Cosine phi maximum**** Maximum power input† Circuit A Circuit B Option 81 Nominal current drawn*** Circuit A Circuit B Option 81 Maximum current drawn (Un)† Circuit A Circuit B Option 81 Maximum current drawn (Un)† Circuit A Circuit B Option 81	A A A A A A A A A A A A A A A A A A A	w w w w	244 588 - - - - 0.0.0.1 177 - - - - - - - - - - - - - - - - - - -	87 V via 87 888 91 33 32 22 25 5	587	33 22	772 - - 772 - 0.84 0.90 194 - - - 400		209		72 .87 .90 23 32	588 744 588 866 0.8 86 0.9 97 177 344 166 322 277 275 55	7 9 7 7 7 7 7 2 2 3 3 3 3 6 6 2 2 2 2 4 4 5 5 5 0 0 0 0 0 0	587 757 587 587 0.88 0.92 191 191 382 171 171 342 300 300 600	77 99 77 77 11 00 00 22 11 44 22 13 33 77 44 33	772 655 772 772 772 1172 866 991 43 110 771 881	772 965 772 772 117: 0.85 0.91 252 252 504 210 420 400 400 800	2 5 1	772 986 772 772 1202 0.86 0.91 271 271 542 230 2460 430 430 430 860	777. 100 777. 121 0.86 0.99 299 588 255 500 466 929	2 04 2 2 2 33 37 01 0 0 0 0 0 0 0 0 0

Instantaneous start-up current (maximum operating current of the smallest compressor(s) + locked rotor current or reduced start-up current of the largest compressor).

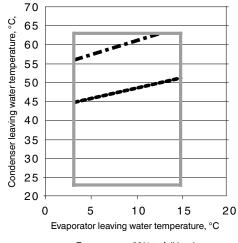
Values based on standard Eurovent unit operating conditions: evaporator entering/leaving water temp. = 12°C/7°C, condenser entering/leaving water temp. = 30°C/35°C. Instantaneous start-up current (maximum operating current of the smallest compressor(s) + locked rotor current or reduced start-up current of the largest compressor). Values obtained at operation with maximum unit power input.

 $Values \ based \ on \ standard \ Eurovent \ unit \ operating \ conditions: \ evaporator \ entering/leaving \ water \ temp. = 12^{\circ}C/7^{\circ}C, \ condenser \ entering/leaving \ water \ temp. = 30^{\circ}C/35^{\circ}C.$

Values obtained at operation with maximum unit power input.

Values obtained at operation with maximum unit power input. Values given on the unit name plate.

9.3 - Dimensions and clearances, units with option 150


Please refer to chapter 3.

9.4 - Operating limits, units with option 150

30XW/30XWH-/30XW-P/30XWHP	Minimum	Maximum
Evaporator		
Entering temperature at start-up	-	35.0°C
Leaving temperature during operation	3.3°C*	15.0°C
Entering/leaving temperature difference at full load	2.8 K	11.1 K
Condenser		
Entering temperature at start-up	13.0°C**	-
Leaving temperature during operation	23.0°C**	63.0°C
Entering/leaving temperature difference at full load	2.8 K	11.1 K

For low-temperature applications, where the leaving water temperature is below 3.3°C, a frost protection solution must be used. Please refer to option 5 and option 6.

Note: Ambient temperatures: During storage and transport of the 30XW units (including by container) the minimum and maximum permissible temperatures are -20°C and 72°C (and 65°C for option 200).

From approx. 60% to full load

Part load limit approx. 50%

■ ■ ■ Minimum load limit approx.30%

For more precise details refer to the unit selection program.

10 - MEDIUM TEMPERATURE (OPTION 5) AND LOW TEMPERATURE (OPTION 6) GLYCOL SOLUTION OPTIONS

Units with the medium temperature (option 5) or low temperature (option 6) option allow glycol solution production down to:

- - 6°C with ethylene glycol and option 5 (minimum weight concentration of 25%)
- - 3°C with propylene glycol and option 5 (minimum weight concentration of 24%)
- - 12°C with ethylene glycol and option 6 (minimum weight concentration of 35%)
- - 8°C with propylene glycol and option 6 (minimum weight concentration of 30%)

These options are available for the following unit reference numbers:

30XW-P0512

30XW-P0562

30XW- P1012

30XW--1152

Option 100C (evaporator with one pass) is not compatible with options 5 and 6. For option 5 the evaporator must be configured with two passes and for option 6 with three passes.

10.1 - Physical data, units with options 5 and 6

Standard-efficiency and high-efficiency 30XW- / 30XWH units (options 5 and 6)
Option 5 (medium temperature)

		Option 5 (medium tem	perature)		Option 6 (low temperat	ture)	
30XW/30XWH (reference)		P0512	P0562	P1012	-1152	P0512	P0562	P1012	-1152
Operating weight	kg	2981	3020	6872	5705	2981	3020	6872	5705
Compressors		Semi-herm	etic 06T screv	v compressors	, 50 r/s				
Circuit A		1	1	1	1	1	1	1	1
Circuit B		-	-	1	1	-	-	1	1
Refrigerant charge*		R-134a							
Circuit A	kg	140	140	125	110	140	140	125	110
Circuit B	kg	-	-	125	110	-	-	125	110
Oil charge		SW220							
Circuit A	1	32	32	32	32	32	32	32	32
Circuit B	1	-	-	32	32	-	-	32	32
Capacity control		Pro-Dialog	, electronic ex	pansion valves	(EXV)				
Minimum capacity	%	30	30	20	20	30	30	20	20
Evaporator		Multi-pipe	flooded type						
Net water volume	1	75	75	206	189	93	93	226	205
Water connections		Victaulic							
Inlet/outlet	in	6	6	8	8	5	5	6	6
Drain and vent connections (NPT)	in	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8
Maximum water-side operating pressure	kPa	1000	1000	1000	1000	1000	1000	1000	1000
Condenser		Multi-pipe							
Net water volume	1	112	112	347	238	112	112	347	238
Water connections		Victaulic							
Inlet/outlet	in	6	6	8	8	6	6	8	8
Drain and vent connections (NPT)	in	3/8	3/8	3/8	3/8	3/8	3/8	3/8	3/8
Maximum water-side operating pressure	kPa	1000	1000	1000	1000	1000	1000	1000	1000

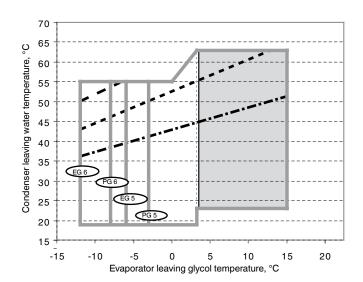
^{*} Weights are guidelines only. The refrigerant charge is given on the unit nameplate.

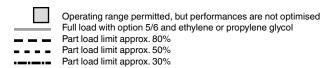
^{**} For lower condenser temperatures a water flow control valve must be used at the condenser (two or three-way valve). Please refer to option 152 to ensure the correct condensing temperature.

10.2 - Electrical data, units with options 5 and 6

The electrical data of 30XW units with options 5 and 6 are the same as for 30XW units with option 150. Please refer to chapter 9.2.

10.3 - Dimensions, clearances, units with option 5 and 6


The dimensions and clearances are the same as for 30XW units. Please refer to chapter 3.


10.4 - Operating range, units with options 5 and 6

	Minimum	Maximum
Evaporator		
Entering water temperature at start-up	-	35°C
Leaving temperature during operation*		
EG 5 Option 5 with ethylene glycol	-6°C	15°C
PG 5 Option 5 with propylene glycol	-3°C	15°C
EG 6 Option 6 with ethylene glycol	-12°C	15°C
PG 6 Option 6 with propylene glycol	-8°C	15°C
Entering/leaving temperature difference at full load	2.8 K	11.1 K***
Condenser		
Entering water temperature at start-up	13°C**	-
Leaving temperature during operation	19°C/23°C**	55°C/63°C****
Entering/leaving temperature difference at full load	2.8 K	11.1 K

^{*} The operating range with evaporator leaving temperatures above 3°C is permitted, but the performances are not optimised.

Note: Ambient temperatures: During storage and transport of the 30XW units (including by container) the minimum and maximum permissible temperatures are -20°C and 72°C (and 65°C for option 200).

10.5 - Minimum recommended evaporator flow rate with options 5 and 6

		Option 5 (medium temp	erature)		Option 6 (low temperate	ure)	
Reference number		P0512	P0562	P1012	-1152	P0512	P0562	P1012	-1152
Minimum evaporator flow rate*	l/s	17	19	36	40	14	14	27	29
Minimum evaporator flow rate**	l/s	17	19	36	41	14	16	31	32

^{*} Recommended values with ethylene glycol at the evaporator. Minimum concentration of 25% with option 5 and of 35% with option 6.

Note: The minimum flow rates are for information only. For more precise details refer to the unit selection program.

10.6 - Nominal evaporator pressure drop with options 5 and 6

		Option 5 ((medium tem	perature)		Option 6 (low temperatu	ıre)	
Reference number		P0512	P0562	P1012	-1152	P0512	P0562	P1012	-1152
Nominal evaporator flow rate*	l/s	19	21	40	45	15	17	31	34
Nominal evaporator pressure drop*	kPa	38	46	61	75	48	61	82	102
Nominal evaporator flow rate**	l/s	19	22	41	47	15	17	31	35
Nominal evaporator pressure drop**	kPa	41	50	66	82	51	66	89	110

Option 5

- * Values based on 25% ethylene glycol, evaporator entering/leaving water temperatures of -2°C/-6°C and condenser entering/leaving water temperatures of 30°C/35°C.
- ** Values based on 24% propylene glycol, evaporator entering/leaving water temperatures of +1°C/-3°C and condenser entering/leaving water temperatures of 30°C/35°C.

Option 6

- * Values based on 35% ethylene glycol, evaporator entering/leaving water temperatures of -8°C/-12°C and condenser entering/leaving water temperatures of 30°C/35°C.
- * Values based on 30% propylene glycol, evaporator entering/leaving water temperatures of -4°C/-8°C and condenser entering/leaving water temperatures of 30°C/35°C.

^{**} For lower condenser temperatures a water flow control valve must be installed at the condenser (two-way or three-way). Please refer to option 152 to ensure the correct condensing temperature.

^{***} Please refer to chapter 10.5 for the minimum recommended evaporator glycol flow rate.

^{****} Depends on the conditions at the evaporator and the load conditions.

^{**} Recommended values with propylene glycol at the evaporator. Minimum concentration of 24% with option 5 and of 30% with option 6.

11 - MAJOR SYSTEM COMPONENTS AND OPERATION DATA

11.1 - Direct-drive twin-screw compressor with variable capacity slide valve

- 30XW units use 06T geared twin-screw compressors equipped with a variable capacity slide valve for continuous control between 15% and 100% of full load.
- The 06T compressor models used are: 06TT-266, 06TT-301, 06TT-356, 06TU-483, 06TU-554, 06TV-680, 06TV-753, 06TV-819

11.1.1 - Oil filter

The 06T screw compressor has an independent oil filter.

11.1.2 - Refrigerant

The 30XW is a liquid chiller operating only with refrigerant R-134a.

11.1.3 - Lubricant

The 06T screw compressor is approved for use with the following lubricant: CARRIER MATERIAL SPEC PP 47-32.

11.1.4 - Oil supply solenoid valve

An oil supply solenoid valve is installed on the oil return line as standard to isolate the compressor from oil flow when the compressor is not operating. The oil solenoid valve is field replaceable.

11.1.5 - Capacity control system

The 06T screw compressor has an unloading system that is standard on all compressors. This unloading system consists of slide valve that permits changing the length of the screw used for the refrigerant compression. This valve is controlled by the action of a piston controlled by two solenoid valves on the oil return line.

11.2 - Pressure vessels

General

Monitoring during operation, re-qualification, re-testing and re-testing dispensation:

- Follow the regulations on monitoring pressurised equipment.
- It is normally required that the user or operator sets up and maintains a monitoring and maintenance file.
- If no regulations exist or to complement regulations, follow the control programmes of EN 378.
- If they exist follow local professional recommendations.
- Regularly inspect the condition of the coating (paint) to detect blistering resulting from corrosion. To do this, check a non-insulated section of the container or the rust formation at the insulation joints.
- Regularly check for possible presence of impurities (e.g. silicon grains) in the heat exchange fluids. These impurities maybe the cause of the wear or corrosion by puncture.
- Filter the heat exchange fluid check and carry out internal inspections as described in EN 378.
- In case of re-testing please refer to the maximum operating pressure given on the unit nameplate.
- The reports of periodical checks by the user or operator must be included in the supervision and maintenance file.

Repair

Any repair or modification, including the replacement of moving parts:

- must follow local regulations and be made by qualified operators and in accordance with qualified procedures, including changing the heat exchanger tubes.
- must be made in accordance with the instructions of the original manufacturer. Repair and modification that necessitate permanent assembly (soldering, welding, expanding etc.) must be made using the correct procedures and by qualified operators.
- An indication of any modification or repair must be shown in the monitoring and maintenance file.

Recycling

The unit is wholly or partly recyclable. After use it contains refrigerant vapours and oil residue. It is coated by paint.

Operating life

The evaporator and oil separator are designed for:

- prolonged storage of 15 years under nitrogen charge with a temperature difference of 20 K per day.
- 452000 cycles (start-ups) with a maximum difference of 6 K between two neighbouring points in the vessel, based on 6 start-ups per hour over 15 years at a usage rate of 57%.

Corrosion allowances:

Gas side: 0 mm

Heat exchange fluid side: 1 mm for tubular plates in lightly alloyed steels, 0 mm for stainless steel plates or plates with copper-nickel or stainless steel protection.

11.2.1 - Evaporator

30XW chillers use a flooded multi-tube evaporator. The water circulates in the tubes and the refrigerant is on the outside in the shell. One vessel is used to serve both refrigerant circuits. There is a centre tube sheet which separates the two refrigerant circuits. The tubes are 3/4" diameter copper with an enhanced surface inside and out. There is just one water circuit with two water passes (one pass with option 100C, please refer to chapter 6.5).

The evaporator shell has a polyurethane foam thermal insulation and a water drain and purge.

It has been tested and stamped in accordance with the applicable pressure codes. The maximum standard relative operating pressure is 2100 kPa for the refrigerant-side and 1000 kPa for the water-side. These pressures can be different depending on the code applied. The water connection of the heat exchanger is a Victaulic connection.

The products that may be added for thermal insulation of the containers during the water piping connection procedure must be chemically neutral in relation to the materials and coatings to which they are applied. This is also the case for the products originally supplied by Carrier.

11.2.2 - Condenser and oil separator

The 30XW chiller uses a heat exchanger that is a combination condenser and oil separator. It is mounted below the evaporator. Discharge gas leaves the compressor and flows through an external muffler to the oil separator, which is the upper portion of the heat exchanger. It enters the top of the separator where oil is removed, and then flows to the bottom portion of the vessel, where gas is condensed and subcooled. One vessel is used to serve both refrigerant circuits. There is a center tube sheet which separates the two refrigerant circuits. The tubes are 3/4" or 1" diameter internally and externally finned copper tubes.

There is just one water circuit with two water passes (one pass with option 102C, please refer to chapter 6.5). For the Heat Machine units the condenser shell can have a polyure-thane foam thermal insulation (option 86) and a water drain and purge.

It has been tested and stamped in accordance with applicable pressure codes. The maximum standard relative operating pressure is 2100 kPa for the refrigerant-side and 1000 kPa for the water-side. These pressures can be different depending on the code applied. The water connection of the heat exchanger is a Victaulic connection.

11.2.3 - Economiser function (depending on model)

The economiser function includes a liquid line valve, a filter drier, two electronic expansion valves (EXVs), a plate heat exchanger as well as protection devices (fuse or valve).

At the condenser outlet a part of the liquid is expanded via the secondary EXV in one of the heat exchanger circuits and then returns as a gas. This expansion permits increase of the liquid sub-cooling of the rest of the flow that penetrates the evaporator via the principal EXV. This permits increasing the cooling capacity of the system as well as its efficiency.

11.3 - High-pressure safety switch

30XW units are equipped with high-pressure safety switches.

In accordance with the applicable code the high-pressure switches with manual reset, called PZH (former DBK), may be backed up by high-pressure switches that require resetting with a tool. The high-pressure switches that require resetting with a tool are called PZHH (former SDBK). If a PZHH cuts out, the corresponding PZH in the same compressor is faulty and must be replaced. The PZHH must be reset with a blunt tool with a diameter of less than 6 mm. Insert this tool into the opening on the pressure switch and push the reset button in this location.

These pressure switches are located at the discharge of each compressor.

11.4 - Electronic expansion valve (EXV)

The EXV is equipped with a stepper motor (2785 to 3690 steps, depending on the model) that is controlled via the EXV board.

The EXV is also equipped with a sightglass that permits verification of the mechanism movement and the presence of the liquid gasket.

11.5 - Moisture indicator

Located on the EXV, permits control of the unit charge and indicates moisture in the circuit. The presence of bubbles in the sight-glass indicates an insufficient charge or non-condensables in the system. The presence of moisture changes the colour of the indicator paper in the sight-glass.

11.6 - Filter drier

The role of the filter drier is to keep the circuit clean and moisture-free. The moisture indicator shows, when it is necessary to change the element. A difference in temperature between the filter inlet and outlet shows that the element is dirty.

11.7 - Sensors

The units use thermistors to measure the temperature, and pressure transducers to control and regulate system operation (see 30XA/30XW Pro-Dialog Control IOM for a more detailed explanation).

12 - OPTIONS AND ACCESSORIES

solution 4°C and industrial processes (51,2 0.56,1012, 1006 temporature brins solution of the unpracture special solution production down to 1.2°C consequence and industrial processes (51,2 0.56,1012, 1006 appears to assembled 51 buttle appealed in the assembled paint. The unit is equipped with farges that allow deseembly of the unit is equipped with farges that allow deseembly of the unit is equipped with farges that allow deseembly of the unit is equipped with farges that allow deseembly of the unit is equipped with farges that allow deseembly of the unit is consequent processor of the unit is consequent to the unit with a consequent processor of the unit on the unit is the consequence of the unit of the unit farges that allow deseembly of the unit is producted processor of the unit of the unit farges that allow deseembly of the unit of the unit farges that the unit is producted or the unit of the unit farges that the unit is producted or the unit of the unit farges that the unit is producted or the unit of the unit farges that the unit is producted or the unit of the unit farges that the unit is producted or the unit of the unit farges that the unit of the unit farges that the unit is producted or the unit of the unit farges that t	Options	No.	Description	Advantages	Use
Unit supplied in two assembled of 1 Unit suggisted with an electrical powerformed control of 1 Unit whort of scores of which, but with ahort-circuit protection diversity of 1 Unit suggisted with an electrical powerformed circuit of unit whort of scores of unit who	Medium temperature brine solution	5			0512, 0562, 1012,
sparts operated provided provi	Low temperature brine solution	6	Low temperature glycol solution production down to -12°C		As above
connection No disconnect excitch/but will Bab Intollinear protection of work of the water point of the water water to the connections of the water point of the water point of the water point of the water point of the water water to the connections of the water point of the water water water water water to the connections of the water point of the water	Unit supplied in two assembled parts	51	equipped with flanges that allow disassembly of the unit	·	1312, 1462, 1612,
protection protection 4 Unit equipped with an electrical power/control circuit for protection of the unit retained on the unit retained water interface on the water plants water temperature up to 100 per protection with one pass 5 Everyorator with one pass 1000 [A proportion with one pass are passed on the water plants are unit retained on the unit retained unit retained on the unit retained unit retained on the unit retained unit retai	Single power connection point	81		Quick and easy installation	30XW 1002-1762
powerforthot circuit powerforthot powerforthot circuit powerforthot powerforthot circuit powerforthot powerforthot circuit powerforthot powerforthot powerforthot circuit powerforthot powerforthot powerforthot powerforthot circuit powerforthot powerforth	No disconnect switch/but with short-circuit protection	82A		for the unit (to be field-supplied). Short-circuit	30XW 252-1762
powerfortord circuit Condindenser pump electrical powerfortord circuit Condindenser pump electrical powerfortord circuit Condindenser pump electrical powerfortord circuit Condindenser pumpis Condindenser pu	Evaporator pump electrical power/control circuit	84		Quick and easy installation	30XW 252-1252
power/control circuit Service valve set Service v		84D		Quick and easy installation	30XW 252-1252
Service valve set 92 Valve set consisting of liquid line valve (evaporator infex), configuration with special installation invalve to isolate the various refingerant occur components. Service valve set 92 Valve set consisting of liquid line valve (evaporator infex), configuration with special installation). Service valve set 93 Valve set consisting of liquid line valve (evaporator infex), configuration valve to isolate the various refigurant occur of control infex), configuration valve to isolate the various refigurant occur of control infex, control i	Condenser pump electrical	84R	Unit equipped with an electrical power/control circuit for	Quick and easy installation	30XW 252-1252
Service valve set Service valve set 92 Valve set consisting of liquid line valve (exaporator inlet), economiser return line valve and compressor suction line valve to soldate the various refrigerant circuit compensation.		86	· · ·		30XW 252-1762
Exporator with one pass 100C Exporator with one pass on the water-side. Exporator condenser with one pass 102C Condenser with one pass on the water-side. Exporator 104C Condenser with one pass on the water-side. Condenser pressure losses. 102C Condenser with one pass on the water-side condenser initied and outlet on poposite sides. 104C Reinforced evaporator for extension of the maximum water-side service pressure to 21 bar 104C Reinforced condenser for extension of the maximum water-side service pressure to 21 bar 104C Reinforced condenser for extension of the maximum water-side service pressure to 21 bar 104C Reinforced condenser for extension of the maximum water-side service pressure to 21 bar 104C Reinforced condenser for extension of the maximum water-side extension of the water priping 30XW 252-1762 104C 104C	Service valve set	92	economiser return line valve and compressor suction line	,	30XW 252-1762
Condenser with one pass 102C Condenser with one pass on the water-side. Condenser Co	Evaporator with one pass	100C	Evaporator with one pass on the water-side. Evaporator		30XW 252-1762
21 bar evaporator 104 Reinforced evaporator for extension of the maximum 21 bar condenser 104A. Reinforced condenser for extension of the maximum 22 that condenser 105A. Reversed evaporator water 107E Caporator with reversed water inlet/outlet 107E Condenser with reversed water inlet/outlet 107A. Condenser with reversed water inlet/outlet 107A. Condenser with reversed water inlet/outlet 107B. Two-directional communications board, compiles with 108B Two-directional communications board, compiles with 108B Two-directional communications board, compiles with 108B 28B Two-directional communications board, compiles with 108B 28B Two-directional communications board, compiles with 108B Two-directional communications board, compiles with 109B Two-dire	Condenser with one pass	102C	Condenser with one pass on the water-side. Condenser	Quick and easy installation. Reduced condenser	30XW 252-1762
21 bar condenser 104A Reinforced condenser for extension of the maximum water-side service pressure to 21 har (high buildings) Reversed evaporator water concendenser water connections Reversed condenser water connections JBus gateway 148B Two-directional communications board, compiles with JBus protocol BacNet gateway 148C Two-directional communications board, compiles with JBus protocol BacNet gateway 148D Two-directional communications board, compiles with JBus protocol LON gateway 148D Two-directional communications board, compiles with JBus protocol 150 Increased condenser leaving water temperature by Communication bus to a JOXW 252-1762 building management by communica	21 bar evaporator	104	Reinforced evaporator for extension of the maximum	Covers applications with a high water column	30XW 252-1762
Reversed condenser water concections Reversed condenser water concections and communications board, compiles with JBUs gateway 1480 Two-directional communications board, compiles with Bachet protocol bilding management bus to a Bachet protocol bilding management gater temperature up to 63°C. To ensure control of the condenser leaving water temperature, this option must be fitted for 30XVH units (but not for 30XVM- units (but not for 40XVM- units (but not for 40X	21 bar condenser	104A	Reinforced condenser for extension of the maximum	Covers applications with a high water column	30XW 252-1762
Reversed condenser water connections JBus gateway 1488 Two-directional communications board, complies with JBus protocol BacNet gateway 149C Two-directional communications board, complies with JBus protocol BacNet gateway 1480 Two-directional communications board, complies with JBus protocol BacNet gateway 1480 Two-directional communications board, complies with BacNet protocol BacNet gateway 1480 Two-directional communications board, complies with BacNet protocol Increased condenser leaving water temperature up to 83°C. To ensure control of the condenser leaving water temperature; this option must be filled for 30°CMV units by 100°C. To ensure control of the condenser leaving water temperature; the site poliror must be filled for 30°CMV units. Condensing temperature Initiation 1590 Limitation of the maximum condenser leaving water temperature to 49°C. Modification on the unit name plate to reflect the reduced power input and current values. Control for low condensing temperature systems 1502 Output signal (0-10 V) to control the condenser water inlet water. Energy Management Module Energy Management Module Energy Management Module Touch Screen interface 1581 Two-directional communications board, complies with the properature to water temperature to 49°C. Modification on the unit name plate to reflect the reduced power input and current values. 1590 Two-directional communications water interperature water interperature water interperature water interperature water. 1590 Two-directional communications water interperature water interperature water interperature water interperature water interperature water interperature water. 1590 Two-directional communications water water interperature water interperature water interperature water water interperature water water interperature water interperature water water water interperature water w	Reversed evaporator water	107	· · · · · · · · · · · · · · · · · · ·		30XW 252-1762
Jaus gateway 148B Two-directional communications board, complies with Jaus protocol Ja	Reversed condenser water	107A	Condenser with reversed water inlet/outlet	Simplification of the water piping	30XW 252-1762
BacNet gateway		148B		•	30XW 252-1762
LON gateway LON gateway LON protocol High condensing temperature Herotauro divisions Hodging and temperature High condensing temperature Herotauro divisions Hodging and leave temperature and connection by middle double. Additional contents for an expect	BacNet gateway	148C	Two-directional communications board, complies with	Easy connection by communication bus to a	30XW 252-1762
High condensing temperature 150 Increased condenser leaving water temperature up to 63°C. To ensure control of the condenser leaving water temperature (flor heat reclaim or dry cooler applications) Condensing temperature 150 Il Limitation of the maximum condenser leaving water temperature (flor heat reclaim or dry cooler applications) Control for low condensing temperature 150 Il Limitation of the maximum condenser leaving water temperature to 45°C. Modification on the unit name plate to reflect the reduced power input and current values. Control for low condensing temperature 150 Uptut signal (0-10 V) to control the condenser water inlet valve. Control for low condensing temperature to 45°C. Modification on the unit name plate to reflect the reduced power input and current values. Control for low condensing temperature to the power cables. Control for low condensing temperature to the power cables. Control for low condensing temperature to the power cables. Control for low condensing temperature to the power cables. Control for low condensing temperature to the power cables. Control for low condensing temperature to the power cables. Control for low condensing temperature to the power cables. Control for low condensing temperature to the power cables. Control for low condensing temperature to the power cables. Control for low condensing temperature to the power cables. Control for low condensing temperature to the power cables. Control for low condensing temperature to the power cables. Control for low condensing temperature to the power cables. Control for low condensing temperature to the power cables. Control for low condensing temperature to the power cables. Control for low condensing temperature temperature systems that the condensation for the cable to the power cables. Condensing temperature temperatu	LON gateway	148D	Two-directional communications board, complies with	Easy connection by communication bus to a	30XW 252-1762
Limitation Lim	High condensing temperature	150	Increased condenser leaving water temperature up to 63°C. To ensure control of the condenser leaving water temperature, this option must be fitted for 30XWH units	Allows applications with high condensing temperature (for heat reclaim or dry cooler	30XW 252-1762
temperature systems valve. condenser inlet (well water). In this case the valve controls the water entering temperature to maintain an acceptable condensing pressure. Energy Management Module EMM Semble Control module. Additional contacts for an extension of the unit control functions. Easy connection by wired connection to a bulk 252-1762 building management system SUM 252-1762 building management sys	Condensing temperature limitation	150B	Limitation of the maximum condenser leaving water temperature to 45°C. Modification on the unit name plate		30XW 252-1762
EMM extension of the unit control functions. building management system Touch Screen interface 158 Touch Screen interface User-friendly and intuitive large interface with touch screen technology (120 x 99 mm) Additional tests on the water heat exchangers. Supply of PED documents, dimensional drawings and test certificates. Code compliance for Australia 200 Heat exchanger approved in accordance with the Australian regulations 30XW 252-1762 evaporator and suction piping sound insulation 3 dB(A) quieter than a unit without this option 30XW 402-1762 compared to standard unit) Thermal compressor insulation 271 Thermal compressor insulation Prevents condensation forming on the compressor (due to the ambient air) Accessories Description Advantages Use CCN JBus gateway See option 148B See option 148B See option 148C See option 148C See option 148C See option 148D See o	Control for low condensing temperature systems	152		condenser inlet (well water). In this case the valve controls the water entering temperature to	30XW 252-1762
Code compliance for Switzerland 197	Energy Management Module EMM	156			30XW 252-1762
Code compliance for Switzerland 197 Additional tests on the water heat exchangers. Supply of PED documents, dimensional drawings and test certificates. Code compliance for Australia 200 Heat exchanger approved in accordance with the Australian regulations 30XW 252-1762 Australian code. Low noise level (-3 dB(A) 257 Evaporator and suction piping sound insulation 271 Thermal compressor insulation 271 Thermal compressor insulation 30XW 402-1762 Compressor insulation 30XW 252-1762 Compressor ins	Touch Screen interface	158	Touch Screen interface		30XW 252-1762
Australian code. Low noise level (-3 dB(A) 257 Evaporator and suction piping sound insulation compared to standard unit) Thermal compressor insulation 271 Thermal compressor insulation Prevents condensation forming on the compressor (due to the ambient air) Accessories Description Advantages Use CCN JBus gateway See option 148B See option 148B See option 148B See option 148B See option 148C See option 148D See option 156 Energy Management Module EMM Lead-lag kit Supplementary water outlet temperature sensor kit, field-installed, allows master/slave operation of two chillers connected in parallel. Water connections kit for welded connections Water connection kit for flanged connections with flanged joints. Victaulic piping connections with flanged joints. Easy installation 30XW 252-1762 Sound absorbing cabinet around the unit Significantly quieter (-20 dB(A)) than a unit 30XW 252-1252,	Code compliance for Switzerland	197	PED documents, dimensional drawings and test	Conformance with Swiss regulations	30XW 252-1762
Low noise level (-3 dB(A) compared to standard unit) Thermal compressor insulation Thermal condensition Thermal compressor insulation Thermal compressor (due to the ambient air) Advantages See option 148B See option 148B See option 148B See option 148B See option 148C See option 148D See opti	Code compliance for Australia	200		Conformance with Australian regulations	30XW 252-1762
Thermal compressor insulation 271 Thermal compressor insulation Prevents condensation forming on the compressor (due to the ambient air) Accessories Description Advantages Use CCN JBus gateway See option 148B See option 148B See option 148B 30XW 252-1762 CCN BacNet gateway See option 148C See option 148C See option 148D 30XW 252-1762 CCN LON Talk gateway See option 148D See option 148D See option 148D 30XW 252-1762 Energy Management Module EMM Lead-lag kit Supplementary water outlet temperature sensor kit, field-installed, allows master/slave operation of two chillers connected in parallel. Water connection kit for welded connections Water connection kit for flanged connections with flanged joints. Water connection kit for flanged connections Very low noise level (-20 dB(A) 258 Sound absorbing cabinet around the unit Significantly quieter (-20 dB(A)) than a unit 30XW 252-1252,		257		3 dB(A) quieter than a unit without this option	30XW 402-1762
AccessoriesDescriptionAdvantagesUseCCN JBus gatewaySee option 148BSee option 148B30XW 252-1762CCN BacNet gatewaySee option 148CSee option 148C30XW 252-1762CCN LON Talk gatewaySee option 148DSee option 148D30XW 252-1762Energy Management Module EMMSee option 156Easy connection by wired connection to a building management system30XW 252-1762Lead-lag kitSupplementary water outlet temperature sensor kit, field-installed, allows master/slave operation of two 	Thermal compressor insulation	271	Thermal compressor insulation		30XW 252-1762
CCN BacNet gateway See option 148C See option 148C See option 148D Optimised operation of two chillers connected in parallel with operating time balancing. Water connections Victaulic piping connections with welded joints. See option 148D Optimised operation of two chillers connected in parallel with operating time balancing. SoxW 252-1762 See option 148D See opt	Accessories		Description		Use
CCN LON Talk gateway See option 148D Source option 148D See option 148D See option 148D See option 148D Source option 148D See option 148D Source option 148D See option 148D Source opti	CCN JBus gateway		See option 148B	See option 148B	30XW 252-1762
Energy Management Module EMM See option 156 Easy connection by wired connection to a building management system Optimised operation of two chillers connected in parallel with operating time balancing. Water connections Water connection kit for welded connections Water connection kit for flanged connections Victaulic piping connections with flanged joints. Victaulic piping connections with flanged joints. Easy installation SayW 252-1762 Easy installation 30XW 252-1762 Easy installation 30XW 252-1762 Sound absorbing cabinet around the unit Significantly quieter (-20 dB(A)) than a unit 30XW 252-1762	CCN BacNet gateway		•		
Lead-lag kit Supplementary water outlet temperature sensor kit, field-installed, allows master/slave operation of two chillers connected in parallel with operating time balancing. Water connections kit for welded connections Water connection kit for flanged connections Water connections Victaulic piping connections with flanged joints. Water connection kit for flanged connections Victaulic piping connections with flanged joints. Supplementary water outlet temperature sensor kit, parallel with operating time balancing. Easy installation 30XW 252-1762 Supplementary water outlet temperature sensor kit, parallel with operating time balancing. Supplementary water outlet temperature sensor kit, parallel with operation of two chillers connected in parallel with operating time balancing. Supplementary water outlet temperature sensor kit, parallel with operation of two chillers connected in parallel with operating time balancing. Supplementary water outlet temperature sensor kit, parallel with operation of two chillers connected in parallel with operating time balancing. Supplementary water outlet temperature sensor kit, parallel with operation of two chillers connected in parallel with operation of two chillers connected in parallel with operating time balancing. Supplementary water outlet temperature sensor kit, parallel with operation of two chillers connected in parallel with operating time balancing. Supplementary water of two chillers connected in parallel with operating time balancing. Supplementary water of two chillers connected in parallel with operation of two chillers connected in parallel with operating time balancing. Supplementary water of two chillers connected in parallel with operating time balancing.	Energy Management Module		· · ·	Easy connection by wired connection to a	
Water connection kit for welded connections Water connections Water connection kit for flanged connections with flanged joints. Water connections Victaulic piping connections with flanged joints. Connections Victaulic piping connections with flanged joints. Easy installation 30XW 252-1762 Easy installation 30XW 252-1762 Sound absorbing cabinet around the unit Significantly quieter (-20 dB(A)) than a unit 30XW 252-1252,	EMM Lead-lag kit		field-installed, allows master/slave operation of two	Optimised operation of two chillers connected in	30XW 252-1762
Water connection kit for flanged connections with flanged joints. Connections Victaulic piping connections with flanged joints. Easy installation 30XW 252-1762 Sound absorbing cabinet around the unit Significantly quieter (-20 dB(A)) than a unit 30XW 252-1252,	Water connection kit for welded		· · · · · · · · · · · · · · · · · · ·	Easy installation	30XW 252-1762
Very low noise level (-20 dB(A) 258 Sound absorbing cabinet around the unit Significantly quieter (-20 dB(A)) than a unit 30XW 252-1252,	Water connection kit for flanged		Victaulic piping connections with flanged joints.	Easy installation	30XW 252-1762
	Very low noise level (-20 dB(A) compared to standard unit)	258	Sound absorbing cabinet around the unit		

13 - STANDARD MAINTENANCE

Air conditioning equipment must be maintained by professional technicians, whilst routine checks can be carried out locally by specialised technicians.

Simple preventive maintenance will allow you to get the best performance from your HVAC unit:

- improved cooling performance
- reduced power consumption
- prevention of accidental component failure
- prevention of major time-consuming and costly interventions
- protection of the environment

There are five maintenance levels for HVAC units, as defined by the AFNOR X60-010 standard.

13.1 - Level 1 maintenance

See note below.

Simple procedure can be carried out by the user:

- Visual inspection for oil traces (sign of a refrigerant leak)
- Air heat exchanger (condenser) cleaning see chapter "Condenser coil level 1"
- Check for removed protection devices, and badly closed doors/covers
- Check the unit alarm report when the unit does not work (see report in the 30XA/30XW Pro-Dialog Plus control manual).

General visual inspection for any signs of deterioration.

13.2 - Level 2 maintenance

See note below.

This level requires specific know-how in the electrical, hydronic and mechanical fields. It is possible that these skills are avail-able locally: existence of a maintenance service, industrial site, specialised subcontractor.

In these cases, the following maintenance operations are recommended.

Carry out all level 1 operations, then:

- At least once a year tighten the power circuit electrical connections (see tightening torques table).
- Check and re-tighten all control/command connections, if required (see tightening torques table).
- Check the differential switches for correct operation every 6 months.
- Remove the dust and clean the interior of the control boxes, if required. Check the filter condition.
- Check the presence and the condition of the electrical protection devices.
- Replace the fuses every 3 years or every 15000 hours (age-hardening).
- Replace the control box cooling fans (if used) every five years.
- Check the water connections.
- Purge the water circuit (see chapter 7 "Water connections").

- Clean the water filter (see chapter 7 "Water connections").
- Check the unit operating parameters and compare them with previous values.
- Keep and maintain a maintenance sheet, attached to each HVAC unit.

All these operations require strict observation of adequate safety measures: individual protection garments, compliance with all industry regulations, compliance with applicable local regulations and using common sense.

13.3 - Level 3 (or higher) maintenance

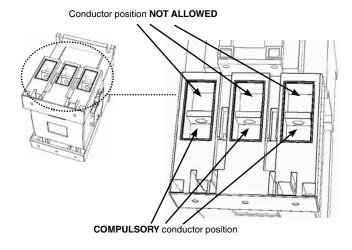
See note below.

The maintenance at this level requires specific skills/ approval/tools and know-how and only the manufacturer, his representative or authorised agent are permitted to carry out these operations. These maintenance operations concern for example:

- A major component replacement (compressor, evaporator)
- Any intervention on the refrigerant circuit (handling refrigerant)
- Changing of parameters set at the factory (application change)
- Removal or dismantling of the HVAC unit
- Any intervention due to a missed established maintenance operation
- Any intervention covered by the warranty

NOTE: Any deviation or non-observation of these maintenance criteria will render the guarantee conditions for the HVAC unit nul and void, and the manufacturer, Carrier France, will no longer be held responsible.

13.4 - Tightening of the electrical connections


13.4.1 - Tightening torques for the main electrical connections

Screw type	Designation in the unit	Torque value, N·m
Screw on bus bar, customer connection		
M10	L1/L2/L3	40
M12	L1/L2/L3	70
Soldered screw PE, customer connection (M12)	PE	70
Screw on fused disconnect inlet zones		
Fused disconnect 1034061/M10, customer connection	L1/L2/L3	40
Fused disconnect 1034061/M12, Y/D outlet	QS10-	70
Fused disconnect 3KL7141	QS10-	70
Fused disconnect 3KL7151	QS10-	70
Tunnel terminal screw, compressor contactor		
Contactor 3RT104-	KM-	5
Contactor 3RT105-	KM-	11
Contactor 3RT106-	KM-	21
Tunnel terminal screw, current transformer		
Size 2 (3RB2966-)	TI-	11
Compressor earth terminal in the power wiring co	ontrol box	
M12	Gnd	70
Compressor phase connection terminals		25
M12	1/2/3/4/5/6 on EC-	23
M16	1/2/3/4/5/6 on EC-	30
Compressor earth connection	Gnd on EC-	25
Tunnel terminal screw, water pump disconnect		
Disconnect switch 3RV101-	QM90-	2,5
Disconnect switch 3RV102-	QM90-	2,5
Disconnect switch 3RV103-	QM90-	4
Tunnel terminal screw, water pump contactor		
Contactor 3RT102-	KM90-	2.5
Contactor 3RT103-	KM90-	4

13.4.2 - Connection precautions for the power contactors

These precautions must be applied for units equipped with 06TUA554, 06TVW753 and 06TVW819 compressors. For these units the power contactor type is 3RT1064 (Siemens).

The contactors allow two connection positions in the cage clamps. But only one position allows safe and reliable tightening on the contactor (KM1 or KM2). The conductor must be positioned in front of the connection area when it is tightened. If it is tightened behind the area, there is a risk that the brackets will be damaged during the tightening.

13.5 - Tightening torques for the main bolts and screws

Screw type	Used for	Torque value, N·m	
M20 nut	Chassis	190	
M20 nut	Heat exchanger side-side connection	240	
M16 nut	Compressor fixing	190	
H M16 screw	Heat exchanger water boxes, structure	190	
H M16 screw	Compressor suction flanges TT	190	
H M20 screw	Compressor suction flanges TU & TV	240	
M16 nut	Compressor discharge line TT & TU	190	
M20 nut	Compressor discharge line TV	240	
H M12 screw	Economiser port flange & economiser port valve, option 92	80	
H M8 screw	Drier cover	35	
1/8 NPT connection	Oil line	12	
TE nut	Compressor oil line	24,5	
7/8 ORFS nut	Oil line	130	
5/8 ORFS nut	Oil line	65	
3/8 ORFS nut	Oil line	26	
H M6 screw	Stauff collar	10	
Taptite screw M6	Oil line collar	7	
Taptite screw M6	Brass body, economiser line	10	
Metric screw M6	Steel plate fixing, contral box, terminal box	7	
Taptite screw M10	Oil filter, economiser module, control box fixing	30	

13.6 - Evaporator and condenser maintenance

Check that:

- the insulating foam is intact and securely in place,
- the sensors and flow switch are correctly operating and correctly positioned in their support,
- the water-side connections are clean and show no sign of leakage.

13.7 - Compressor maintenance

13.7.1 - Oil filter change schedule

As system cleanliness is critical to reliable system operation, there is a filter in the oil line at the oil separator outlet. The oil filter is specified to provide a high level of filtration (5 μ m) required for long compressor life.

The filter should be checked after the first 500 hours of operation, and every subsequent 2000 hours. The filter should be replaced at any time when the pressure differential across the filter exceeds 2 bar.

The pressure drop across the filter can be determined by measuring the pressure at the discharge port (at the oil separator) and the oil pressure port (at the compressor). The difference in these two pressures will be the pressure drop across the filter, check valve, and solenoid valve. The pressure drop across the check valve and solenoid valve is approximately 0.4 bar, which should be subtracted from the two oil pressure measurements to give the oil filter pressure drop.

13.7.2 - Compressor rotation control

Correct compressor rotation is one of the most critical application considerations. Reverse rotation, even for a very short duration, damages the compressor and can even destroy it.

The reverse rotation protection scheme must be capable of determining the direction of rotation and stopping the compressor within one second. Reverse rotation is most likely to occur whenever the wiring at the compressor terminals has been modified.

To minimise the opportunity for reverse rotation, the following procedure must be applied. Rewire the power cables to the compressor terminal pin as originally wired. Apply a counter-torque at the lower nut at the supply cable terminal during installation.

For replacement of the compressor, a low pressure switch is included with the compressor. This low pressure switch should be temporarily installed as a hard safety on the high pressure part of the compressor. The purpose of this switch is to protect the compressor against any wiring errors at the compressor terminal pin. The electrical contact of the switch would be wired in series with the high pressure switch. The switch will remain in place until the compressor has been started and direction of rotation has been verified; at this point, the switch will be removed.

The switch that has been selected for detecting reverse rotation is Carrier part number HK01CB001. This switch opens the contacts when the pressure falls below 7 kPa. The switch is a manual reset type that can be reset after the pressure has once again risen above 70 kPa. It is critical that the switch be a manual reset type to preclude the compressor from short cycling in the reverse direction.

14 - START-UP CHECKLIST FOR 30XW LIQUID CHILLERS (USE FOR JOB FILE)

☐ Inlet piping to cooler includes a 20 mesh strainer with a mesh size of 1.2 mm.

Preliminary information Job name: Location: Installing contractor: Distributor: Unit Model: **Compressors** Circuit A Circuit B Serial number Serial number **Evaporator** Model number..... Serial number **Condenser section** Model number..... Serial number Additional optional units and accessories..... Preliminary equipment check Is there any shipping damage? If so, where? Will this damage prevent unit start-up? Unit is level in its installation ☐ Power supply agrees with the unit nameplate Electrical circuit wiring has been sized and installed properly ☐ Unit ground wire has been connected ☐ Electrical circuit protection has been sized and installed properly ☐ All terminals are tight ☐ All chilled water valves are open All chilled water piping is connected properly All air has been vented from the chilled water circuit ☐ The unit is switched off again, after the pump test has been completed Chilled water pump (CWP) is operating with the correct rotation. Check the phase sequence of the electrical connection. ☐ Circulate chilled water in the water circuit for at least two hours, then remove, clean and replace the screen filter. The unit is switched off again, after the pump test has been completed.

Unit start-up
☐ Oil level is correct
☐ All discharge and liquid line valves are open
Locate, repair and mark all refrigerant leaks
All suction valves are open, if used
All oil line valves and economizer valves (if used) are open
Checks have been carried out for any possible leaks. Unit has been leak checked (including fittings)
- on the whole unit
- at all connections
Locate, repair, and report any refrigerant leaks
☐ Check voltage imbalance: AB BC BC
Average voltage = V
Maximum deviation = V
Voltage imbalance = %
□Voltage imbalance is less than 2%
WARNING: Operation of the chiller with an improper supply voltage or excessive phase imbalance constitutes abuse which will invalidate the Carrier warranty. If the phase imbalance exceeds 2% for voltage, or 10% for current, contact
your local electricity supplier at once and ensure that the chiller is not switched on until corrective measures have been taken.
Chaelz gooler weter loop
Check cooler water loop Water loop volume = litres
☐ Calculated volume = litres
3.25 litres/nominal kW capacity for air conditioning
☐ 6.5 litres/nominal kW capacity for process cooling
Proper loop volume established
Proper loop corrosion inhibitor includedlitres of
Proper loop freeze protection included (if required)litres of
Piping includes electric heater tape, if exposed to temperatures below 0°C
☐ Inlet piping to cooler includes a 20 mesh strainer with a mesh size of 1.2 mm
Check massaure dues course the coulon
Check pressure drop across the cooler
Entering cooler = kPa
Leaving cooler = kPa
☐ Leaving - entering = kPa
WARNING: Plot cooler pressure drop on performance data table (in product data literature) to determine total litres per second (l/s) and find unit's minimum flow rate.
Total — 1/a
Total l/s is greater than unit's minimum flow rate
Total l/s meets job specified requirement ofl/s
WARNING: Once power is supplied to the unit, check for any alarms (refer to the 30XA/30XW Pro-Dialog control IOM for the alarm menu).
Note all alarms:
NOTE: The pouch supplied with the unit contains the label indicating the refrigerant used and describing the procedure
The pouch supplied with the unit contains the label indicating the refrigerant used and describing the procedure required under the Kyoto Protocol F-Gas Regulation:
Attach this label to the machine.
 Attach this tabel to the machine. Follow and observe the procedure described.
- гоном ини объегуе те ргосеште исъстоей.
Notes:
INUIES

www.eurovent-certification.com www.certiflash.com

