

SUPER ABSORPTION

16TJ 11-53

Nominal cooling capacity 352-2461 kW

The Carrier Corporation has more than 100 years experience in providing HVAC systems and equipment around the world. Sanyo is a leading manufacturer in the field of highefficiency absorption chillers. Carrier-Sanyo absorption chillers, produced by Sanyo for Carrier, provide a unique choice of models for all absorption chiller applications.

Features

- The Carrier-Sanyo 16TJ single-effect absorption chillers are designed for cooling applications where low-pressure steam is available as waste heat.
- They can tie into district steam systems.
- Carrier-Sanyo absorption chillers allow diversification of critical cooling requirements. Critical cooling loads are met with minimal electrical power input.

- They allow smaller emergency generators compared to an electrical driven chiller.
- The units are ozone-safe and CFC-free. Cooling requirements are met without chlorine-based refrigerants.
- They reduce the contribution to global warming and minimize the global impact by greatly reducing electricity consumption and production of greenhouse gases.
- The solution inhibitor has no impact on the environment.
- An absorption chiller does not utilize a large motorcompressor, and this leads to quiet, vibration-free operation.
- The use of high-efficiency heat transfer surfaces has reduced the space required for installation of the absorption chiller, resulting in a smaller footprint.

Carrier-Sanyo is the industry leader in compact absorption units.

Nomenclature

16TJ - 11 Capacity code - Unit type: Single-effect, steam-fired absorption chillers

Component identification

- Legend 1. Condenser 2. Steam inlet 3. Generator 4. Chilled-water outlet 5. Control panel 6. Evaporator 7. Chilled-water inlet 8. Cooling water inlet 9. Heat exchanger 10. Heat reclaimer 11. Absorber

The absorption cycle

The absorption cooling cycle, like the mechanical vapour compression refrigeration cycle, utilizes the latent heat of evaporation of a refrigerant to remove heat from the entering chilled water. Vapour compression refrigeration systems use a chlorine-based refrigerant and a compressor to transport the refrigerant vapour to be condensed in the condenser. The absorption cycle, however, uses water as the refrigerant and an absorbent lithium bromide solution to absorb the vaporized refrigerant. Heat is then applied to the solution to release the refrigerant vapour from the absorbent. The refrigerant vapour is then condensed in the condenser.

The basic single-effect absorption cycle (see Figure 1) includes generator, condenser, evaporator and absorber with refrigerant (liquid) and lithium bromide as the working solutions. The generator utilizes a heat source (burner, steam or hot water) to vaporize the diluted lithium bromide solution. The water vapour that is released travels to the condenser where it is condensed back into a liquid, transferring the heat to the cooling tower water. Once condensed, the liquid refrigerant is distributed over the evaporator tubes, removing the heat from the chilled water and vaporizing the liquid refrigerant. The concentrated lithium bromide solution from the generator passes into the absorber, absorbs the refrigerant vapour solution from the evaporator and dilutes itself. The diluted lithium bromide solution is then pumped back to the generator where the cycle is started again.

Figure 1 - Simplified absorption cycle

Legend

- Condenser Refrigerant vapour 2.
- Generator
- 3. 4. 5. 6. 7.
- Cooling water Liquid refrigerant Concentrated solution
- Heat source
- 8. Chilled water
- 9. Cooling water
- 10 Evaporator
- 11. 12. Absorber
- Absorbent pump

Cooling cycle schematic

Chiller features

Expert self-diagnosis function

The expert function is provided to monitor operating conditions, predict chiller information and maintain stable operation.

Predictive maintenance information

Graph 1 - Fouling of heat transfer tubes in cooling water system

Graph 2 - Trend of absorbent concentration

Graph 3 - Vacuum condition monitoring

Legend

- Storage tank
- 2 Diluted solution Purge nozzle
- 3. 4. Pd cell

5 Pressure sensor

Carrier-Sanyo control system

- The Carrier-Sanyo control system surpasses other proportional only control systems available today. The digital PID (proportional plus integral plus derivative) control maximizes unit performance by maintaining a ± 0.5 K variance in leaving chilled-water temperature from the setpoint. Proportional controls can typically only maintain a ± 1 K variance from the setpoint. The controller's innovative design also incorporates the ability to start and stop the system chilled and cooling water pumps. During shutdown these pumps are sequenced to ensure a complete dilution cycle.
- The leaving chilled-water temperature is measured every five seconds and steam input is changed according to the gradient of the leaving chilled-water temperature curve. System temperatures, setpoints, and operational records are displayed along with indicator lights for the chiller and pumps.
- The Carrier-Sanyo control system offers its users selfdiagnostics by constantly monitoring the chiller status and will automatically shut the chiller down should a fault occur. The cause of shutdown will be retained in the memory and can be displayed for immediate operator review. The controller's memory will also retain and display the cause of the last three system fault conditions. This method of retaining fault conditions is extremely useful for maintaining an accurate record of unit performance and fault history.

Display and control board

Figure 2 - Indication lights

Legend Name

•	Name	LED colour
1.	Operation indication light	Green
2.	Stop indication light	Orange
3.	Alarm indication light	Red
4.	Remote/local select button with LED	Green
5.	Operation select button with LED	Green
6.	Data display	7 segment LED (red)
7.	Stand-by indication light	Green
8.	Dilution indication light	Green
9.	Safety circuit indication light	Green
10.	Power indication light	Orange
GL*.	Purge indication light	Green
43P*.	Purge pump on-off switch	
43ES*.	Emergency stop switch	

* On the control panel door, see p.16

Fast digital PID control

The introduction of new digital PID control to the J-model stabilizes the chilled-water temperature with higher accuracy than the previous E-model. It quickly responds to the load fluctuation and supplies stable chilled-water temperature. It is suitable for air-conditioning intelligent buildings which require sophisticated control.

Saving energy with the inverter (option)

Balancing the load and flow rate with the absorbent pump's inverter control enables efficient and energy-saving operation. As a result, it reduces input energy and electric power consumption. Running cost is decreased by 5% compared to non-inverter control.

Graph 4 - Running cost curve

Notes:

1. Chilled-water leaving temperature 7°C constant

2. Cooling water entering temperature:

100	02
50	27
30	25
30	25

Purge system

The high-performance purge system maintains the required operating pressure, preserves chiller performance characteristics, minimizes chiller maintenance to one purge operation per season (for year-round operation).

Steam valve opening control

- At the start-up the opening angle of the steam control valve is controlled in three stages, reducing the amount of steam and the time needed to reach the desired level, compared with the previous model.
- Adjusting the opening speed of the steam control valve at the second and third stage, it is possible to set up the most suitable conditions for the site auxiliary equipment.

Graph 5 - Steam valve opening control

Expansion of safe operating zone

- This ensures quick response to rapid changes and maintains stable operation.
- The safe operating zone is between 19°C and 34°C cooling water temperature (for a nominal cooling water entering temperature of 32°C)

Graph 6 - Safe operating zone chart

Crystallization protection

• A microprocessor monitors the absorbent concentration. Steam supply is stopped, and the unit is returned to normal operation, when the concentration is over a certain limit, to prevent the crystallization of absorbent.

Technical data Single effect steam-fired absorption chillers

	16TJ		11	12	13	14	21	22	23	24	31	32	41	42	51	52	53
	Cooling capacity	kW	352	422	527	633	738	844	985	1125	1266	1407	1582	1758	1969	2215	2461
	Chilled-water system*																-
	Flow rate	l/s	15.1	18.2	22.7	27.3	31.8	36.3	42.4	48.4	54.5	60.6	68.1	75.7	84.8	95.4	106.0
	Pressure drop	kPa	49	51	63	66	59	62	41	44	47	51	41	44	38	51	66
	Connection (ANSI)	inch	4	4	4	4	5	5	6	6	6	6	8	8	8	8	8
	Retention volume	m ³	0.12	0.13	0.15	0.17	0.22	0.24	0.28	0.30	0.34	0.36	0.46	0.48	0.65	0.71	0.77
	Cooling water system	**															
	Flow rate	l/s	22.7	27.3	34.1	40.7	47.7	54.5	63.6	72.7	81.8	90.8	102.2	113.6	127.2	143.1	159.0
	Pressure drop	kPa	34	36	31	36	31	34	64	69	54	56	59	63	41	54	70
	Connection (ANSI)	inch	5	5	5	5	6	6	8	8	8	8	10	10	12	12	12
	Retention volume	m ³	0.35	0.38	0.43	0.48	0.60	0.65	0.72	0.79	0.99	1.06	1.25	1.35	2.03	2.18	2.32
	Steam system		Saturat	ted steam	100 kPa												
	Consumption	kg/h	780	940	1170	1410	1640	1880	2190	2500	2810	3120	3510	3900	4370	4920	5460
	Steam inlet	inch	5	5	5	5	6	6	8	8	8	8	8	8	10	10	10
	Drain outlet	inch	1-1/2	1-1/2	1-1/2	1-1/2	1-1/2	1-1/2	1-1/2	1-1/2	2	2	2-1/2	2-1/2	2-1/2	2-1/2	2-1/2
	Control valve	inch	2	2	2-1/2	2-1/2	2-1/2	3	3	4	4	4	4	4	4	5	5
	Shutoff valve	inch	2	2	2-1/2	2-1/2	2-1/2	3	3	4	4	4	4	4	4	5	5
_	Length (L)	mm	2680	2681	3690	3690	3770	3770	4850	4850	4910	4910	4960	4960	5050	5590	6090
_	Width (W)	mm	1295	1295	1295	1295	1455	1455	1455	1455	1515	1515	1615	1615	1950	1950	1950
	Height (H)	mm	2215	2215	2215	2215	2350	2350	2350	2350	2620	2620	2870	2870	3200	3200	3200
_	Tube removal space	mm	2400	2400	3400	3400	3400	3400	4500	4500	4500	4500	4500	4500	4600	5200	5700
	Operating weight	kg	3900	4100	5000	5200	6400	6700	7800	8200	10100	10500	12200	12700	17400	18800	20100
	Max. shipping weight	kg	3400	3600	4400	4600	5600	5800	6800	7100	8800	9100	10500	10800	14700	15900	17000
	Shipping method		One-pi	ece													
	Power supply		400 V-3	3 ph-50 H	lz												
_	Apparent power	kVA	4.0	4.0	4.0	4.0	5.8	5.8	5.9	5.9	7.3	7.3	7.3	7.3	7.3	7.3	7.3
	Total electric current	А	6.2	6.2	6.2	6.2	8.7	8.7	9.0	9.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0
	No.1 absorbent pump	kW	1.1	1.1	1.1	1.1	2.2	2.2	2.2	2.2	3.0	3.0	3.0	3.0	3.0	3.0	3.0
_		А	2.8	2.8	2.8	2.8	5.5	5.5	5.5	5.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5
	Refrigerant pump	kW	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
		А	1.25	1.25	1.25	1.25	1.25	1.25	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
	Purge pump	kW	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
		А	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
	Pd cell heater	W	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38
	Control circuit	W	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300

Legend

 * In accordance with ARI 560 - 2000 12.2 \longrightarrow 6.7°C (Fouling factor = 0.0176 m² K/kW) 29.4 \longrightarrow 38.4°C (Fouling factor = 0.044 m² K/kW) Saturated steam 10 kPa

Note: For selection outside ARI operating conditions please contact Carrier.

Scope of supply

1. Standards met

- The units comply with the following standards:
- ARI 560-2000
- 89/392/EEC (machine directive)
- 73/23/EEC (low-voltage directive)
- 89/336/EEC (electromagnetic compatibility directive)
- 97/23/EC (pressure equipment directive)

2. Absorption chiller, comprising:

- 1. Lower shell
 - · Evaporator and refrigerant dispersion tray
 - Absorber and absorbent dispersion tray
 - Eliminators
 - Bases
- 2. Upper shell
 - Generator
 - Condenser
 - Low temperature (LT) generator
 - Eliminators
 - Rupture disk mounting flange
- 3. Heat exchangers
- 4. Pumps
 - Absorbent pump with isolating valves
 - · Refrigerant pump with isolating valves
 - Purge pump
- 5. Purge unit
 - Purge tank
 - · Ejector and liquid trap
 - · Piping and various manual valves
 - Palladium cell with heater
- 6. Control panel
 - Controller with data display
 - LEDs and operation buttons
 - Inverter for absorbent pump (option)
 - Circuit breaker
 - Transformer
 - · Relays and terminal blocks
 - Purge pump operation switch
- 7. Locally mounted parts
 - Temperature sensors
 - Chilled-water flow switch
 - Generator pressure switch
- 8. Interconnecting piping and wiring
 - Refrigerant and absorbent piping
 - Internal power and control wiring
- 9. Initial charge
 - Absorbent (lithium bromide)
 - Refrigerant (water)
 - Inhibitor (lithium molybdate)
- 10. Painting
 - Main unit: Rust-preventive paint
 - · Control panel: Finish paint
- 11. Accessories
 - Operation manual: One set
 - Washer (for fixing foundation bolts): One set
 - Gasket and sealant for rupture disk: One set

3. Factory test

- 1. Check of external dimensions
- 2. Hydraulic pressure test of water headers Test pressure is 1.5 times of maximum working pressure
- 3. Vacuum-side leak test
- 4. Electric insulation resistance test
- 5. Dielectric breakdown test
- 6. Function test of electric circuit and safety devices

4. Scope of supply of the purchaser

- Building and foundations
 External chilled water, cooling water and steam piping work including various safety valves, isolation valves, mating flanges, gaskets, bolts and nuts, etc.
- 3. External wiring and piping for the chillers including necessary parts
- 4. Insulation for the chillers including necessary parts.
- 5. Finish painting of the chillers (if needed)
- 6. Cooling water entering temperature control device
- 7. Cooling water treatment device
- 8. Various temperature/pressure gauges for steam and water lines.
- 9. Cooling tower(s), chilled-water pump(s) and steam control valve and steam shut-off valve
- 10. Electric power supply (as specified)
- 11. Supply of chilled water, cooling water, steam and air* at rated conditions
- 12. Maintenance of the chiller
- 13. Necessary tools, labour and materials for installation and site test operation
- 14. Any other item not specifically mentioned in the scope of supply
- * If pneumatic steam valve control is used

Scope of order

Item	Standard	Option
Chilled water		
Temperature	Entering: 12.2°C, leaving: 5°C through 12°C Leaving: 6.7°C, temperature difference 3 K through 10 K	
Flow rate	0.043 l/s x kW. Changes depending on chilled water temperature difference (min 50%)	
Max.working pressure	1034 kPa	.1540 kPa, 2068 kPa
Hydraulic test pressure	Max. working pressure x 1.5	.Max. working pressure x 1.5
Fouling factor	0.018 m ² K/kW. Max. 0.18 m ² K/kW	
Tube material	Copper tube	.Cu Ni tube
Water quality	Refer to JRA-GL02E-1994	.No option
Structure of water header	Removable type and epoxy treated	.No option
Manufacturing standard of water header	Flanged ANSI	.No option
Cooling water		
Temperature	Entering: 29.4°C	
	Leaving: 38.4°C, entering: 20°C through 33°C	
Flow rate	0.065 l/s per kW. Within the water flow rate range of each model	
Max. working pressure	1034 kPa	.1540 kPa, 2068 kPa
Hydraulic test pressure	Max. working pressure x 1.5	
Fouling factor	0.044 m ² K/kW. Max. 0.18 m ² K/kW	
Tube material	Copper tube	.Cu Ni tube
Water quality	Refer to JRA-GL02E-1994	.No option
Structure of water header	Hinged type and epoxy treated	.No option
Manufacturing standard of water header	Flanged ANSI	.No option
Steam		
Supply pressure	100 kPa, 50 kPa through 100 kPa, max. 5 K superheat	
Specific steam consumption	2.22 kg/h/kW. Changes depend on the specifications.	
Max. working pressure	146 kPa	.No option
Hydraulic test pressure	Max. working pressure x 1.5	.No option
Iube material		.No option
Steam quality Manufacturing standard of water beader	Flanged ANSI	No option
Electricity Bewer supply	400 V 2 phase 50 Hz	Contact the Carrier Service representative
Power supply	400 V - 3 priase - 50 Hz	.Contact the Carrier-Sanyo representative
Shinmont		Multiphipmont
		.Muti sniphent
Control Sofety functions	Defrigerent temperature	Cooling water flow owitch
Salety functions	Chilled water freeze protection	Cooling water now switch
	Chilled water flow switch	
	Cooling water temperature	
	HT generator temperature	
	HT generator pressure	
	HT generator solution level	
	Crystallization protection	
	Motor protection	
Capacity control	Digital PID control by chilled-water temperature	Inverter control of #1 absorbent pump.
Parts	Selected by Carrier-Sanyo	.No option
Control panel		
Painting	Munsell 5Y-7/1	.No option
Indication lights	Operation	.No option
	Stop	.No option
Display	Alarm	.ivo option
	LED	
External terminals		.No option
(Volt-free normally open contact)	Stop indication	
	Alarm Indication	
	Cooling mode indication	
Structure		No option
Parts	Selected by Carrier-Sanvo	No option
Electrical wiring and piping		
Electrical wining and piping	Wire: 600 V polyvinyl grade (chloride-insulated wires)	No option
	Pipe: Plicatube (flexible metal conduits)	.No option
Insulation condition		1
Place	Indoor	.No option
Ambient temperature	5°C through 40°C	.No option
Ambient humidity	Relative humidity: max 90% at 45°C	.No option
Atmosphere	Be sure the following are not present	No option
	- Corrosive gas	···
	- Explosive gas	
	- Poisonous gas	

Pass arrangement

16TJ	Evaporator						Condenser			
	Minimum	Standard	Maximum	Minimum	Standard	Maximum	Minimum	Standard	Maximum	
11	2	4	6	2	3	4	1	2	2	
12	2	4	6	2	3	4	1	2	2	
13	2	3	4	2	2	3	1	1	2	
14	2	3	4	2	2	3	1	1	2	
21	2	3	4	2	2	3	1	1	2	
22	2	3	4	2	2	3	1	1	2	
23	2	2	4	2	2	3	1	1	2	
24	2	2	4	2	2	3	1	1	2	
31	2	2	4	2	2	3	1	1	2	
32	2	2	4	2	2	3	1	1	2	
41	2	2	4	2	2	3	1	1	2	
42	2	2	4	2	2	3	1	1	2	
51	2	2	4	2	2	3	1	1	2	
52	2	2	4	2	2	3	1	1	2	
53	2	2	4	2	2	3	1	1	2	

NOTE: The drawings shown on the following pages are for the standard number of passes. For applications outside the nominal conditions of this catalogue, computer selection software can automatically select the most appropriate number of passes.

Dimensional drawings, mm

16TJ 11 through 16TJ 12

NOTES Dimensions (L), (W), (H) are for a standard machine. 1. The dimensions are changed by parts added. Guidcates the position of anchor bolts. Clearance space must be available at the front and rear of the 2. 3. chiller. 4. All external water piping must be provided with welded ANSI 150 LB flanges by the customer. indicates the position of the power supply connection on the 5. control panel (diameter 35 mm) 6.

Installation clearance:	
Ends	1000 mm
Тор	200 mm
Others	500 mm

16TJ 13 through 16TJ 14

NOTE: Dimensions are for guidance only. Always refer to the certified drawings supplied upon request when designing an installation.

16TJ 21 through 16TJ 22

16TJ 23 through 16TJ 24

NOTE: Dimensions are for guidance only. Always refer to the certified drawings supplied upon request when designing an installation.

16TJ 31 through 16TJ 32

16TJ 41 through 16TJ 42

NOTE: Dimensions are for guidance only. Always refer to the certified drawings supplied upon request when designing an installation.

16TJ 51 through 16TJ 53

Foundation dimensions, mm

Figure 3 - 16TJ-11 through 16TJ-42

Figure 4 - Details of weld

NOTES:

- 1. The machine base has ø50-mm hole for the anchor bolt.
- 2. The anchor bolt should be fixed as shown in the detail drawing. Washer should be welded to the base (see Fig. 4)
- 3. There should be a drain channel around the foundation.
- 4. The floor surface should be made waterproof to facilitate maintenance work.
- 5. The surface of the foundation should be made flat.
- 6. Anchor bolts and nuts are to be supplied by customer.

Table 1 - Dimensional data

16TJ	Weight, kg AA + BB	AA	BB	Dimensio A	ons, mm B	с	D	Е	F	G	J	к
 11	3800	1900	1900	1890		175	360	800	150	1100	160	900
12	4000	2000	2000	1890		175	360	800	150	1100	160	900
13	4900	2450	2450	2916		175	360	800	150	1100	160	900
14	5100	2550	2550	2916		175	360	800	150	1100	160	900
21	6200	3100	3100	2866		200	400	1000	150	1300	200	1100
 22	6500	3250	3250	2866		200	400	1000	150	1300	200	1100
23	7600	3800	3800	3886		200	400	1000	150	1300	200	1100
 24	8000	4000	4000	3886		200	400	1000	150	1300	200	1100
31	9800	4900	4900	3836		225	450	1100	150	1400	250	1200
32	10200	5100	5100	3836		225	450	1100	150	1400	250	1200
41	11800	5900	5900	3836		225	450	1150	150	1450	250	1250
42	12300	6150	6150	3836		225	450	1150	150	1450	250	1250
51	16900	8450	8450	3706	130	190	510	1600	180	1960	250	1700
52	18300	9150	9150	4248	130	190	510	1600	180	1960	250	1700
53	19600	9800	9800	4746	130	190	510	1600	180	1960	250	1700

Control panel dimensions, mm

Start/stop sequence of auxiliary equipment

Field wiring

Figure 6 - Typical electrical field connection diagram - steam-fired absorption chillers (TJ)

Typical piping diagram

5. 6. 7. Bypass valve

2. 3.

4.

14. 15 Blow-down valve

NOTE: In order to prevent freezing of the chilled water ensure continued operation of the primary and secondary chilled-water pumps during dilution cycle operation of the chillers.

General remarks on piping

- 1. Work outside the area surrounded by this line ---- shall be undertaken at the expense of the owner.
- 2. For pipe connections and diameters refer to the dimensional drawings and specification tables.
- Steam pressure at the inlet of the machine cannot exceed 146 kPa. Please refer to the diagram to install a pressure relief valve near the chiller to release pressure above 146 kPa. The relief valve should be piped to the outdoors.
- 4. Even if a reducing valve is not required, a strainer, pressure gauge and drain trap should be provided for each machine near the steam inlet.
- 5. The back pressure of the steam drain outlet pipe should be controlled below 19.6 kPa.
- Determine the location of the chilled and cooling water 6. pumps with due consideration of the pump's hydrostatic head. The machine should not be subject to a pressure larger than 1034 kPa at any water headers.
- 7. Cooling water minimum entering control has to be supplied (please refer to the Installation Manual).
- Provide a thermometer and a pressure gauge at the cooling 8. water and chilled water outlet and inlet.
- Provide an air vent valve in each of the chilled and cooling 9. water lines at a point higher than the header for chilled water and cooling water.

- 10. Drain pipes from the evaporator and absorber should be piped to the drain channel.
- 11. Provide a blow-down valve in the cooling water line for water quality control.
- 12. All external water piping is to be designed for maximum unit water-side pressure (to cover any options used).
- 13. Be sure to provide a shutoff valve to prevent steam flow into the chiller during shut-down. In case two or more chillers are installed, provide an automatic shutoff valve.
- 14. Be sure to design the location of the cooling tower to prevent contamination of cooling water by exhaust gas from flues.
- 15. If required, fit the rupture disk on the chiller according to the rupture disk manual.
- 16. Separate chilled and cooling water pumps should preferably be provided for each chiller.
- 17. Provide an expansion tank in the chilled-water line.
- 18. There should be sufficiently large clearance for easy access to the evaporator, absorber and condenser, to facilitate inspection and cleaning work.

▲ Safety considerations

Before operating the unit

- Before operating the unit be sure to read the operation manual carefully.
- Installation should conform to all applicable local codes and regulations.

During the installation

- Read the installation manual carefully before offloading and installing the unit.
- All work must be carried out by qualified personnel to
- prevent injuries and damage to the equipment. Waterproof the unit foundation and provide a drain channel to prevent water damage to the surrounding equipment.
- Provide adequate space around the unit for maintenance work to ensure safe working conditions.

Maintenance

- In addition to daily inspection periodical maintenance is required. Insufficient or incorrect maintenance may cause fire, electric shock and injuries.
- Please consult your local service office for further guidance.

Avoiding hazardous places

Keep the units away from dangerous inflammable substances such as gasoline, thinner and combustible gases, as these may result in a fire.

Order No. 11614-20, 05.2006. Supersedes order No.: New. Manufacturer reserves the right to change any product specifications without notice. Manufacturer: Sanyo Electric Co. Ltd., Dalian, PR China. Printed on Totally Chlorine Free Paper. Printed in the Netherlands.